

Introduction to LinchPin

Welcome to the LinchPin documentation!

LinchPin is a simple and flexible hybrid cloud orchestration tool. Its intended purpose is managing cloud resources across multiple infrastructures. These resources can be provisioned, decommissioned, and configured all using declarative data and a simple command-line interface.

Additionally, LinchPin provides a Python API for managing resources. The cloud management component is backed by Ansible [https://ansible.com]. The front-end API manages the interface between the command line (or other interfaces) and calls to the Ansible API.

This documentation covers LinchPin version (2.0.0). For recent features, see the updated release notes.

Why LinchPin?

LinchPin provides a simple, declarative interface to a repeatable set of resources on cloud providers such as Amazon Web Services, Openstack, and Google Cloud Platform to help improve productivity and performance for you and your team. It’s built on top of other proven resources, including Ansible and Python. LinchPin is built with a focus on Continuous Integration and Continuous Delivery tooling, in which its workflow excels.

LinchPin has some very useful features, including inventory generation, hooks, and more. Using these, specific cloud resources can be spun up for testing applications. By creating a single PinFile with your targets in an environment, you can simply run linchpin up and have your environment up and configured, ready for you to do your work with very little effort.

	Getting Started

	Documentation

	Developer Information

	FAQs

	Community

	Glossary

Note

Releases are formatted using semanting versioning [https://semver.org]. If the release shown above is a pre-release version, the content listed may not be supported. Use latest for the most up-to-date documentation.

Indices and tables

	Index

	Module Index

	Search Page

See also

	User Mailing List [https://www.redhat.com/mailman/listinfo/linchpin]
	Subscribe and participate. A great place for Q&A

	LinchPin on Github [https://github.com/CentOS-PaaS-SIG/linchpin]
	Code Contributions and Latest Software

	webchat.freenode.net [http://webchat.freenode.net?channels=linchpin]
	#linchpin IRC chat channel

	LinchPin on PyPi [https://pypi.org/project/linchpin/]
	Latest Release of LinchPin

Getting Started

The LinchPin getting started guide will walk you through your first LinchPin project, and show off the basics of the major features LinchPin has to offer.

If you are curious about LinchPin and its features, please read the “Why LinchPin?” page.

This getting started guide will use LinchPin with the dummy provider. LinchPin can work with many other providers and use cases. After following this tutorial, check out some other providers and use cases.

Before starting, please install the latest version of LinchPin.
Test

See also

	Commands (CLI)
	Linchpin Command-Line Interface

	Common Workflows
	Common LinchPin Workflows

	Managing Resources
	Managing Resources

	Examples for all Providers
	Providers in Detail

Installation

LinchPin can be run either as a container or as a bare-metal application

Docker Installation

The LinchPin container is built using the latest Fedora image. The image exists in the docker hub as contrainfra/linchpin and is updated with each release. The image can also be build manually.

From within the config/Dockerfiles/linchpin directory:

$ sudo buildah bud -t linchpin .

Finally, to run the linchpin container:

$ sudo buildah run linchpin -v /path/to/workspace:/workdir -- linchpin -w /wordir up
$ sudo buildah run linchpin -v /path/to/workspace:/workdir -- linchpin -w /workdir -vv destroy

Note

Setting the CREDS_PATH environment variable pointing the /workdir is recommended.
AWS credentials can also be passed as evironment variables when the container is run, named AWS_SECRET_ACCESS_KEY and AWS_ACCESS_KEY_ID

Note

Beaker uses kinit, which is installed in the container but must be run within the container after it starts
The default /etc/krb5.conf for kerberos requires privilege escalation. The linchpin Dockerfile replaces it with a version that eliminates this need

Bare Metal Installation

Currently, LinchPin can be run from any machine with Python 2.6+ (Python 3.x is currently experimental), and requires Ansible 2.7.1 or newer.

Note

Some providers have additional dependencies. Additional software requirements can be found in the Examples for all Providers documentation.

Refer to your specific operating system for directions on the best method to install Python, if it is not already installed. Many modern operating systems will have Python already installed. This is typically the case in all versions of Linux and OS X, but the version present might be older than the version needed for use with Ansible. You can check the version by typing python --version.

If the system installed version of Python is older than 2.6, many systems will provide a method to install updated versions of Python in parallel to the system version (eg. virtualenv).

Minimal Software Requirements

As LinchPin is heavily dependent on Ansible 2.9.0 or newer, this is a core requirement. Beyond installing Ansible, there are several packages that need to be installed:

* libffi-devel
* libyaml-devel
* python3-libselinux
* make
* gcc
* redhat-rpm-config
* libxml2-python
* libxslt-python

For CentOS or RHEL the following packages should be installed:

$ sudo yum install python3-pip python3-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel libselinux-python make \
gcc redhat-rpm-config git

Attention

CentOS 6 (and likely RHEL 6) require special care during installation. See Installing LinchPin on CentOS 6 for more detail.

For Fedora 30+ the following packages should be installed:

$ sudo dnf install python3-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel python3-libselinux make \
gcc redhat-rpm-config libxml2-python libxslt-python

Installing LinchPin

Note

Currently, linchpin is not packaged for any major Operating System. If you’d like to contribute your time to create a package, please contact the linchpin mailing list.

Create a virtualenv to install the package using the following sequence of commands (requires virtualenvwrapper)

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip3 install linchpin
..snip..

Note

mkvirtualenv is optional dependency you can install from here [http://virtualenvwrapper.readthedocs.io/en/latest/install.html]. An alternative, virtualenv, also exists. Please refer to the virtualenv documentation [https://virtualenv.pypa.io/en/stable/] for more details.

To deactivate the virtualenv

(linchpin) $ deactivate
$

Then reactivate the virtualenv

$ workon linchpin
(linchpin) $

If testing or docs is desired, additional steps are required

(linchpin) $ pip3 install linchpin[docs]
(linchpin) $ pip3 install linchpin[tests]

Virtual Environments and SELinux

When using a virtualenv with SELinux enabled, LinchPin may fail due to an error related to the python3-libselinux libraries. This is because the python3-libselinux binary needs to be enabled in the Virtual Environment. Because this library affects the filesystem, it isn’t provided as a standard python module via pip. The RPM must be installed, then a symlink must occur.

(linchpin) $ sudo dnf install python3-libselinux
.. snip ..
(linchpin) $ echo ${VIRTUAL_ENV}
/path/to/virtualenvs/linchpin
(linchpin) $ export VENV_LIB_PATH=lib/python3.x/site-packages
(linchpin) $ export LIBSELINUX_PATH=/usr/lib64/python3.x/site-packages # make sure to verify this location
(linchpin) $ ln -s ${LIBSELINUX_PATH}/selinux ${VIRTUAL_ENV}/${VENV_LIB_PATH}
(linchpin) $ ln -s ${LIBSELINUX_PATH}/_selinux.so ${VIRTUAL_ENV}/${VENV_LIB_PATH}

Note

A script is provided to do this work at :code1.5:`scripts/install_selinux_venv.sh`

Installing on Fedora 30+

Install RPM pre-reqs

$ sudo dnf -y install python3-virtualenv libffi-devel openssl-devel libyaml-devel python3-libselinux make gcc redhat-rpm-config libxml2-python

Create a working-directory

$ mkdir mywork
$ cd mywork

Create linchpin directory, make a virtual environment, activate the virtual environment

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip3 install linchpin

Make a workspace, and initialize it to prove that linchpin itself works

(linchpin) $ mkdir workspace
(linchpin) $ cd workspace
(linchpin) $ linchpin init
PinFile and file structure created at /home/user/workspace

Note

The default workspace is $PWD, but can be set using the $WORKSPACE variable.

Installing on RHEL 7.4

Tested on RHEL 7.4 Server VM which was kickstarted and pre-installed with the following YUM package-groups and RPMs:

* @core
* @base
* vim-enhanced
* bash-completion
* scl-utils
* wget

For RHEL 7, it is assumed that you have access to normal RHEL7 YUM repos via RHSM or by pointing at your own http YUM repos, specifically the following repos or their equivalents:

* rhel-7-server-rpms
* rhel-7-server-optional-rpms

Install pre-req RPMs via YUM:

$ sudo yum install -y libffi-devel openssl-devel libyaml-devel gmp-devel python3-libselinux make gcc redhat-rpm-config libxml2-devel libxslt-devel libxslt-python libxslt-python

Create a working-directory

$ mkdir mywork
$ cd mywork

Create linchpin directory, make a virtual environment, activate the virtual environment

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip3 install linchpin

Inside the virtualenv, upgrade pip and setuptools because the EPEL versions are too old.

(linchpin) $ pip3 install -U setuptools

Install linchpin

(linchpin) $ pip3 install linchpin

Make a workspace, and initialize it to prove that linchpin itself works

(linchpin) $ mkdir workspace
(linchpin) $ cd workspace
(linchpin) $ linchpin init
PinFile and file structure created at /home/user/workspace

Source Installation

As an alternative, LinchPin can be installed via github. This may be done in order to fix a bug, or contribute to the project.

$ git clone git://github.com/CentOS-PaaS-SIG/linchpin
..snip..
$ cd linchpin
$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip3 install file://$PWD/linchpin

linchpin setup : Automatic Dependency installation:

From version 1.6.5 linchpin includes linchpin setup commandline option to automate installations of linchpin dependencies.
linchpin setup uses built in ansible-playbooks to carryout the installations.

Install all the dependencies:

$ linchpin setup

To install only a subset of dependencies, pass as arguments list:

$ linchpin setup beaker docs

It also supports ask-sudo-pass parameter when installing dnf related dependencies:

$ linchpin setup libvirt --ask-sudo-pass

LinchPin Initialization

$ linchpin init simple
Created destination workspace: /tmp/simple
$ cd /tmp/simple
$ linchpin up

.. snip ..

Action 'up' on Target 'simple' is complete

ID: 1
Action: up

Target Run ID uHash Exit Code

simple 1 7735aa 0

After running the commands above, LinchPin should be able to provision for you. We’ll use linchpin init and linchpin fetch throughout this tutorial to get you familiar with its inner workings.

It’s a minimal setup, using the dummy provider. We’ll get more into those in the upcoming parts of this tutorial.

Now that LinchPin is working, the simple workspace is in place, let’s learn more about Workspaces.

Note

If you were unable to get LinchPin successfully installed and/or working, please see the troubleshooting documentation.

Workspaces

What is generated is commonly referred to as the workspace. The workspace can live anywhere on the filesystem. The default is the current directory. The workspace can also be passed into the linchpin command line with the --workspace (--w) option, or it can be set with the $WORKSPACE environmental variable.

In our simple example, the workspaces is /tmp/simple.

A workspace requires only one file, the PinFile. This file is the cornerstone to LinchPin provisioning. It’s a YAML file, written with declarative syntax. This means the PinFile is written to explain how things should be provisioned after running linchpin up.

Looking at the simple workspace, you’ll see that it has a few other items.

$ pwd
/tmp/simple
$ ls
inventories PinFile PinFile.json README.rst resources

Ignoring everything but the PinFile for now, it’s clear that other files and directories will exist in a workspace. Let’s have a closer look at the components of a PinFile.

PinFile

A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a resource for provisioning. An example Pinfile is shown.

The PinFile in the simple workspace is shown below.

1 ---
2 simple:
3 topology:
4 topology_name: simple
5 resource_groups:
6 - resource_group_name: simple
7 resource_group_type: dummy
8 resource_definitions:
9 - name: web
10 role: dummy_node
11 count: 2

The PinFile collects the given topology and layout into one place. It’s grouped together in a target.

Note

Each of the lines of this PinFile are numbered to help identify lines discussed throughout this section. Each will be denoted with a superscript1 next to its description.

Target

In this PinFile, the target2 is the first line simple, just like the name of the workspace. The target is what LinchPin performs actions upon. For instance, typing linchpin up causes the PinFile to be read, and all targets evaluated. The simple target would be found, and then the resources listed would be provisioned.

A target will have subcomponents, which tell linchpin what it should do and how. Currently, those are topology, layout, and hooks. For now, we will just cover the topology and its components.

Topology

A topology3 consists of several items. First and foremost is the topology_name4, followed by one or more resource_groups5. In this PinFile, there is only one resource group.

Resource Group

A resource group contains several items, minimally, it will have a resource_group_name6, and a resource_group_type7. The main component of a resource group, it its resource_definitions8 section.

Resource Definitions

Within a resource group, multiple resource definitions can exist. In many cases, there are desires for two different resources to be provisioned within a resource group. In this example, there is only one. Each provider has its own constraints for what is required. There are some common fields, however. In the example above, there is name9, role10, and count11.

Note

The role relates to the ansible role used to perform provisioning. In this case, that’s the dummy_node role. But many providers have multiple roles.

Definitions help, but lets see it in action.

Note

More detail about the PinFile can be found in the PinFiles document.

Up

It’s time to provision your first LinchPin resources.

1 [/tmp/simple]$ linchpin up
2 [WARNING]: Unable to parse /tmp/simple/localhost as an inventory source

3 [WARNING]: No inventory was parsed, only implicit localhost is available

4 Action 'up' on Target 'simple' is complete

5 ID: 10
6 Action: up

7 Target Run ID uHash Exit Code

8 simple 2 3a4038 0

In just a few seconds, the command will finish. Because the simple target provides only the dummy_node resource, no actual instances are provisioned. However, a representation can be found at /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-3a4038-0.example.net
web-3a4038-1.example.net

More importantly, there are several other things to note. First off, The linchpin command has two basic actions, up and destroy. Each should be pretty self-explanatory.

Summary

Upon completion of every action, there is a summary that is provided. This summary provides details which can be used to repeat the process, or for further reporting with linchpin journal. Let’s cover the process in detail.

uHash

The Unique-ish Hash, or uHash8 provides a way for each instance to be unique within a set of resources. The uHash is used throughout LinchPin with reporting, idempotency, inventories, etc. The uHash is configurable, but defaults to a sha256 hash of some unique data, trimmed to 6 characters.

Run ID

The Run ID8 can be used for idempotency. The Run ID is used for a specific target. Passing -r <run-id> to linchpin up or linchpin destroy along with the target will provide an idempotent up or destroy action.

$ linchpin up --run-id 2 simple

.. snip ..

Action 'up' on Target 'simple' is complete

ID: 11
Action: up

Target Run ID uHash Exit Code

simple 3 3a4038 0

The thing to notice here is that the uHash is the same here as in the original up action above. This provides idempotency when provisioning.

ID

Similar to the Run ID explained above, the Transaction ID, or ID5, is provided for idempotency. If desired, the entire transaction can be repeated using this value. Unlike the Run ID, however, the Transaction ID can be used to repeat the entire transaction (multiple targets). As with Run ID, passing -t <tx-id> will provide idempotent an idempotent up or destroy action.

$ linchpin up --tx-id 10

.. snip ..

ID: 12
Action: up

Target Run ID uHash Exit Code

simple 4 3a4038 0

Note

All targets are executed when using -t/--tx-id. This differs from -r/--run-id where only one target can be supplied per Run ID. This is useful when multiple targets are executed from the PinFile.

Exit Code

A common desire is to check the exit code7. This is provided as an indicator of the action’s success or failure. Commonly, post actions are performed upon resources (eg. configure the system, adding logins, setting up security, etc.)

Destroy

To destroy the previously provisioned resources, use linchpin destroy.

$ linchpin destroy
 [WARNING]: Unable to parse /tmp/simple/localhost as an inventory source

 [WARNING]: No inventory was parsed, only implicit localhost is available

Action 'destroy' on Target 'simple' is complete

ID: 13
Action: destroy

Target Run ID uHash Exit Code

simple 5 3a4038 0

As with linchpin up, destroy provides a summary of the action taken. In this case, however, the resources have been terminated and cleaned up. With the dummy_node role, the resources are remove from the file.

$ cat /tmp/dummy.hosts
$ wc -l /tmp/dummy.hosts
0 /tmp/dummy.hosts

This concludes the introduction of the LinchPin getting started tutorial. For more information, see Examples for all Providers.

Linchpin Hooks

Description:

Every resource provisioned by linchpin goes through multiple states. Each state has its own context. Depending upon the state Linchpin provides a feature to trigger single or multiple events. In Linchpin terminology, each event can initiate execution of a script/scripts or Ansible playbooks called hooks. Hooks are used to configure or interact with resources provisioned or about to be provisioned. The trigger to the hooks is determined by the state in which it is defined.

Different states linchpin provisioning undertakes are as follows:

	preup: State before provisioning the topology resources

	postup: State after provisioning the topology resources, and generating the optional inventory

	predestroy: State before teardown of the topology resources

	postdestroy: State after teardown of the topology resources

Depending upon the state section in which it is defined the hooks are triggered.

In linchpin, there are a set of python interfaces called ActionManagers which are responsible for the execution of a hook. Based on the runtime they use to execute hook there are multiple types of Action managers exists. Here’s a list of built-in Action Managers:

	shell: Allows either inline shell commands or an executable shell script

	python: Executes a Python script

	ansible: Executes an Ansible playbook, allowing passing of a vars_file and extra_vars represented as a Python dict

	nodejs: Executes a Node.js script

	ruby: Executes a Ruby script

In addition to the above action managers, User can define their custom action manager. Refer Action managers documentation for more details.

A hook is bound to a specific target and must be re-stated for each target used.

Based on how they are packaged linchpin hooks are classified into two types:

	User defined hooks: These hooks are written following specific syntax and folder structure within the workspace. These are triggered based upon the section in which it is declared.

User-defined hooks are to be declared within a linchpin workspace folder named “hooks” by default. However, this path can be configured by variable hooks_folder in [evars] section of linchpin.conf.

[evars]
...
hooks_folder = /path/to/hooks_folder

	Built-in hooks (in development): These hooks are pre-packaged with linchpin and they do not need any file structure to be declared in workspaces to work. They can be directly referenced within the Pinfile.

User defined hook example:

Let us consider a user-defined hook for example.

Each hook follows a strict folder structure. If not followed the hooks execution will result in failure.
The following is an example workspace which has a user-defined ansible hook named example_hook. The following would be the directory tree structure of the workspace.

.
├── credentials
├── hooks
│ └── ansible
│ ├── example_hook
│ │ ├── test_hook1.yaml
│ │ ├── test_hook2.yaml
│ ├── example_hook2
│ │ ├── test_ex.yaml
├── inventories
├── layouts
│ └── dummy-layout.yml
├── linchpin.conf
├── linchpin.log
├── PinFile
├── resources
└── topologies
 └── dummy-topology.yml

Every hook with respect to their type is declared in their respective folder ie., ansible hooks go inside ansible folder, python hooks are declared in python folder etc.,
The current example illustrates the folder structure of ansible based hooks.
For more examples folder structures of other hooks refer Hooks examples. Further, the name of the folder should be the name of the hook that will be referred to within a PinFile. Since Ansible relies on the playbooks. All the playbooks are to be defined within the folder.

The following is how a user-defined hook looks like when referenced in a Pinfile dummy provider.

dummy_target:
 topology:
 topology_name: "dummy"
 resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 - role: "dummy_node"
 name: "web"
 count: 1
 layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 example-node:
 count: 1
 host_groups:
 - example
 hooks:
 postup:
 - name: example_hook # name of the hook
 type: ansible # type of the hook ie., the type of action manager being used.
 context: True # whether to pass the linchpin context variables or not.
 actions:
 - playbook: test_hook1.yaml # file name of the playbook to be run
 - playbook: test_hook2.yaml
 - name: example_hook2 # name of the hook
 type: ansible # type of the hook ie., the type of action manager being used.
 context: True # whether to pass the linchpin context variables or not.
 actions:
 - playbook: test_ex.yaml # file name of the playbook to be run

As mentioned previously, depending upon the state where the user would like to execute hooks can be triggered at preup, postup, predestroy, postdestroy states. Within Pinfile these states are defined as separate sections. Every hook declared within a section is executed in a top-down approach. Thus, according to the above example, example_hook would be executed first after that execution is successful, example hook2 would be executed.

Parameters of user-defined hooks:

	name: Name of the hook that is defined. Further, it should match the name of the folder inside the hooks_folder configured

	type: Type of the action manager that is to be used can be any one of ansible, shell, python, ruby, and nodejs.

	Context: while declaring hooks provide an option called as context. When the context variable is set to True some of the linchpin context variables are passed as runtime parameters to the playbooks/scripts executed. This is feature is very helpful when end-user would like to run addition configuration playbooks on provisioned instances.

	actions: Actions are the list of commands, scripts or playbooks which will be run. There can be multiple actions with the same hook file referenced. If it is an ansible type hook, The elements in action should have a playbook, extra_vars(Optional) parameters instead of directly referencing the file path. For more examples refer Linchpin Hooks examples section.

Action manager specific parameters:

The following are examples for different types of hooks using multiple action_managers

	Ansible:

- name: example_hook2 # name of the hook
 type: ansible # type of the hook ie., the type of action manager being used.
 context: True # whether to pass the linchpin context variables or not.
 path: /path/to/scripts # optional , by default path would be configured hooks_folder
 actions:
 - playbook: test_ex.yaml # file name of the playbook to be run
 extra_vars:
 testvar: testval # extravars are optional

	Python:

- name: example_hook2 # name of the hook
 type: python # type of the hook ie., the type of action manager being used.
 context: True # whether to pass the linchpin context variables or not.
 path: /path/to/scripts # optional , by default path would be configured hooks_folder
 actions:
 - script.py #file name of the playbook to be run

	shell:

- name: example_hook3 # name of the hook
 type: shell # type of the hook ie., the type of action manager being used.
 context: True # whether to pass the linchpin context variables or not.
 path: /path/to/scripts # optional , by default path would be configured hooks_folder
 actions:
 # make sure the script file has execute permissions and shebang header included.
 - script.sh #file name of the playbook to be run

	Ruby:

- name: example_ruby # name of the hook
 type: ruby # type of the hook ie., the type of action manager being used.
 context: True # whether to pass the linchpin context variables or not.
 path: /path/to/scripts # optional , by default path would be configured hooks_folder
 actions:
 - script.rb #file name of the playbook to be run

	Nodejs:

- name: example_nodejs # name of the hook
 type: nodejs # type of the hook ie., the type of action manager being used.
 context: True # whether to pass the linchpin context variables or not.
 path: /path/to/scripts # optional , by default path would be configured hooks_folder
 actions:
 - script.js #file name of the playbook to be run

Note: For both ruby and nodejs the runtime interpreters should be pre-installed in the host machine.

	linchpin global hooks or builtins:

Linchpin also provides a prepackaged set of built-in hooks which can be referenced within Pinfile without creating a hooks folder structure. These built-ins are ansible based hooks each having different parameters. Currently, There are three builtin linchpin hooks available to end user. They are:

	ping: Simple ICMP ping to check the host provisioned in inventory is up or not

	check_ssh: linchpin tries to check the ssh server is up and running by logging into the machines provisioned using a ssh key

	port_up: Checks whether the list of network ports are up or down.

All the builtin hooks are context-aware, Thus, every built-in hook is run against the inventory file generated during the linchpin provisioning process.

Builtin hooks Example:

os-server-target:
 topology:
 topology_name: os-server-inst
 resource_groups:
 - resource_group_name: os-server-addl-vols
 resource_group_type: openstack
 resource_definitions:
 - name: "database"
 role: os_server
 flavor: m1.small
 image: CentOS-7-x86_64-GenericCloud-1612
 count: 1
 keypair: test_keypairsk2
 fip_pool: 10.8.240.0
 networks:
 - e2e-openstack
 credentials:
 filename: clouds.yaml
 profile: ci-rhos
 layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 addl-vols-node:
 count: 1
 host_groups:
 - hello
hooks:
 postup:
 # check_ssh, ping and port_up are builtin hooks
 # note builtin hooks follow different structure when compared to localhooks
 - name: check_ssh
 extra_vars:
 # since checking ssh depends on logging into machine pem file, ssh_user are must
 ansible_ssh_private_key_file: test_keypairsk2.key
 ansible_ssh_user: centos
 ansible_ssh_common_args: "'-o StrictHostKeyChecking=no'"
 ansible_python_interpreter: "/usr/bin/python"
 - name: ping
 - name: port_up
 ports:
 - 22
 - 8080

Hook Communication:

Hooks can read data from other hooks run in the same target. Hook data is not shared between a provisioning and corresponding teardown task, but is shared between pre- and post- provisioning as well as between action managers.

Experimental With the exception of the Ansible action manager, hook data is passed via the command line. Each hook will receive two arguments on the command line. The first is a json array containing data from previous hook runs. If the hooks are associated with a teardown, this will include hook data for both the hooks in the current run and the hooks in the corresponding provisioning step. Each item in the array is an object with three fields: return_code. data, and state (e.g. preup). The second argument is a path to a temporary file. In order for a hook to share data, it should write any data it wants to share as json to this file. If the data in the file is not valid json, it will be ignored.

The ansible action manager handles data somewhat differently. The results array is passed as a variable called hook_results to Ansible’s extra vars. Data from Ansible will be sent back to LinchPin using the PlaybookCallback class.

Note: For more examples please refer hooks examples section.

See also

	Commands (CLI)
	Linchpin Command-Line Interface

	Common Workflows
	Common LinchPin Workflows

	Managing Resources
	Managing Resources

	Examples for all Providers
	Providers in Detail

Installation

LinchPin can be run either as a container or as a bare-metal application

Docker Installation

The LinchPin container is built using the latest Fedora image. The image exists in the docker hub as contrainfra/linchpin and is updated with each release. The image can also be build manually.

From within the config/Dockerfiles/linchpin directory:

$ sudo buildah bud -t linchpin .

Finally, to run the linchpin container:

$ sudo buildah run linchpin -v /path/to/workspace:/workdir -- linchpin -w /wordir up
$ sudo buildah run linchpin -v /path/to/workspace:/workdir -- linchpin -w /workdir -vv destroy

Note

Setting the CREDS_PATH environment variable pointing the /workdir is recommended.
AWS credentials can also be passed as evironment variables when the container is run, named AWS_SECRET_ACCESS_KEY and AWS_ACCESS_KEY_ID

Note

Beaker uses kinit, which is installed in the container but must be run within the container after it starts
The default /etc/krb5.conf for kerberos requires privilege escalation. The linchpin Dockerfile replaces it with a version that eliminates this need

Bare Metal Installation

Currently, LinchPin can be run from any machine with Python 2.6+ (Python 3.x is currently experimental), and requires Ansible 2.7.1 or newer.

Note

Some providers have additional dependencies. Additional software requirements can be found in the Examples for all Providers documentation.

Refer to your specific operating system for directions on the best method to install Python, if it is not already installed. Many modern operating systems will have Python already installed. This is typically the case in all versions of Linux and OS X, but the version present might be older than the version needed for use with Ansible. You can check the version by typing python --version.

If the system installed version of Python is older than 2.6, many systems will provide a method to install updated versions of Python in parallel to the system version (eg. virtualenv).

Minimal Software Requirements

As LinchPin is heavily dependent on Ansible 2.9.0 or newer, this is a core requirement. Beyond installing Ansible, there are several packages that need to be installed:

* libffi-devel
* libyaml-devel
* python3-libselinux
* make
* gcc
* redhat-rpm-config
* libxml2-python
* libxslt-python

For CentOS or RHEL the following packages should be installed:

$ sudo yum install python3-pip python3-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel libselinux-python make \
gcc redhat-rpm-config git

Attention

CentOS 6 (and likely RHEL 6) require special care during installation. See Installing LinchPin on CentOS 6 for more detail.

For Fedora 30+ the following packages should be installed:

$ sudo dnf install python3-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel python3-libselinux make \
gcc redhat-rpm-config libxml2-python libxslt-python

Installing LinchPin

Note

Currently, linchpin is not packaged for any major Operating System. If you’d like to contribute your time to create a package, please contact the linchpin mailing list.

Create a virtualenv to install the package using the following sequence of commands (requires virtualenvwrapper)

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip3 install linchpin
..snip..

Note

mkvirtualenv is optional dependency you can install from here [http://virtualenvwrapper.readthedocs.io/en/latest/install.html]. An alternative, virtualenv, also exists. Please refer to the virtualenv documentation [https://virtualenv.pypa.io/en/stable/] for more details.

To deactivate the virtualenv

(linchpin) $ deactivate
$

Then reactivate the virtualenv

$ workon linchpin
(linchpin) $

If testing or docs is desired, additional steps are required

(linchpin) $ pip3 install linchpin[docs]
(linchpin) $ pip3 install linchpin[tests]

Virtual Environments and SELinux

When using a virtualenv with SELinux enabled, LinchPin may fail due to an error related to the python3-libselinux libraries. This is because the python3-libselinux binary needs to be enabled in the Virtual Environment. Because this library affects the filesystem, it isn’t provided as a standard python module via pip. The RPM must be installed, then a symlink must occur.

(linchpin) $ sudo dnf install python3-libselinux
.. snip ..
(linchpin) $ echo ${VIRTUAL_ENV}
/path/to/virtualenvs/linchpin
(linchpin) $ export VENV_LIB_PATH=lib/python3.x/site-packages
(linchpin) $ export LIBSELINUX_PATH=/usr/lib64/python3.x/site-packages # make sure to verify this location
(linchpin) $ ln -s ${LIBSELINUX_PATH}/selinux ${VIRTUAL_ENV}/${VENV_LIB_PATH}
(linchpin) $ ln -s ${LIBSELINUX_PATH}/_selinux.so ${VIRTUAL_ENV}/${VENV_LIB_PATH}

Note

A script is provided to do this work at :code1.5:`scripts/install_selinux_venv.sh`

Installing on Fedora 30+

Install RPM pre-reqs

$ sudo dnf -y install python3-virtualenv libffi-devel openssl-devel libyaml-devel python3-libselinux make gcc redhat-rpm-config libxml2-python

Create a working-directory

$ mkdir mywork
$ cd mywork

Create linchpin directory, make a virtual environment, activate the virtual environment

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip3 install linchpin

Make a workspace, and initialize it to prove that linchpin itself works

(linchpin) $ mkdir workspace
(linchpin) $ cd workspace
(linchpin) $ linchpin init
PinFile and file structure created at /home/user/workspace

Note

The default workspace is $PWD, but can be set using the $WORKSPACE variable.

Installing on RHEL 7.4

Tested on RHEL 7.4 Server VM which was kickstarted and pre-installed with the following YUM package-groups and RPMs:

* @core
* @base
* vim-enhanced
* bash-completion
* scl-utils
* wget

For RHEL 7, it is assumed that you have access to normal RHEL7 YUM repos via RHSM or by pointing at your own http YUM repos, specifically the following repos or their equivalents:

* rhel-7-server-rpms
* rhel-7-server-optional-rpms

Install pre-req RPMs via YUM:

$ sudo yum install -y libffi-devel openssl-devel libyaml-devel gmp-devel python3-libselinux make gcc redhat-rpm-config libxml2-devel libxslt-devel libxslt-python libxslt-python

Create a working-directory

$ mkdir mywork
$ cd mywork

Create linchpin directory, make a virtual environment, activate the virtual environment

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip3 install linchpin

Inside the virtualenv, upgrade pip and setuptools because the EPEL versions are too old.

(linchpin) $ pip3 install -U setuptools

Install linchpin

(linchpin) $ pip3 install linchpin

Make a workspace, and initialize it to prove that linchpin itself works

(linchpin) $ mkdir workspace
(linchpin) $ cd workspace
(linchpin) $ linchpin init
PinFile and file structure created at /home/user/workspace

Source Installation

As an alternative, LinchPin can be installed via github. This may be done in order to fix a bug, or contribute to the project.

$ git clone git://github.com/CentOS-PaaS-SIG/linchpin
..snip..
$ cd linchpin
$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip3 install file://$PWD/linchpin

linchpin setup : Automatic Dependency installation:

From version 1.6.5 linchpin includes linchpin setup commandline option to automate installations of linchpin dependencies.
linchpin setup uses built in ansible-playbooks to carryout the installations.

Install all the dependencies:

$ linchpin setup

To install only a subset of dependencies, pass as arguments list:

$ linchpin setup beaker docs

It also supports ask-sudo-pass parameter when installing dnf related dependencies:

$ linchpin setup libvirt --ask-sudo-pass

LinchPin Initialization

$ linchpin init simple
Created destination workspace: /tmp/simple
$ cd /tmp/simple
$ linchpin up

.. snip ..

Action 'up' on Target 'simple' is complete

ID: 1
Action: up

Target Run ID uHash Exit Code

simple 1 7735aa 0

After running the commands above, LinchPin should be able to provision for you. We’ll use linchpin init and linchpin fetch throughout this tutorial to get you familiar with its inner workings.

It’s a minimal setup, using the dummy provider. We’ll get more into those in the upcoming parts of this tutorial.

Now that LinchPin is working, the simple workspace is in place, let’s learn more about Workspaces.

Note

If you were unable to get LinchPin successfully installed and/or working, please see the troubleshooting documentation.

Workspaces

What is generated is commonly referred to as the workspace. The workspace can live anywhere on the filesystem. The default is the current directory. The workspace can also be passed into the linchpin command line with the --workspace (--w) option, or it can be set with the $WORKSPACE environmental variable.

In our simple example, the workspaces is /tmp/simple.

A workspace requires only one file, the PinFile. This file is the cornerstone to LinchPin provisioning. It’s a YAML file, written with declarative syntax. This means the PinFile is written to explain how things should be provisioned after running linchpin up.

Looking at the simple workspace, you’ll see that it has a few other items.

$ pwd
/tmp/simple
$ ls
inventories PinFile PinFile.json README.rst resources

Ignoring everything but the PinFile for now, it’s clear that other files and directories will exist in a workspace. Let’s have a closer look at the components of a PinFile.

PinFile

A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a resource for provisioning. An example Pinfile is shown.

The PinFile in the simple workspace is shown below.

1 ---
2 simple:
3 topology:
4 topology_name: simple
5 resource_groups:
6 - resource_group_name: simple
7 resource_group_type: dummy
8 resource_definitions:
9 - name: web
10 role: dummy_node
11 count: 2

The PinFile collects the given topology and layout into one place. It’s grouped together in a target.

Note

Each of the lines of this PinFile are numbered to help identify lines discussed throughout this section. Each will be denoted with a superscript1 next to its description.

Target

In this PinFile, the target2 is the first line simple, just like the name of the workspace. The target is what LinchPin performs actions upon. For instance, typing linchpin up causes the PinFile to be read, and all targets evaluated. The simple target would be found, and then the resources listed would be provisioned.

A target will have subcomponents, which tell linchpin what it should do and how. Currently, those are topology, layout, and hooks. For now, we will just cover the topology and its components.

Topology

A topology3 consists of several items. First and foremost is the topology_name4, followed by one or more resource_groups5. In this PinFile, there is only one resource group.

Resource Group

A resource group contains several items, minimally, it will have a resource_group_name6, and a resource_group_type7. The main component of a resource group, it its resource_definitions8 section.

Resource Definitions

Within a resource group, multiple resource definitions can exist. In many cases, there are desires for two different resources to be provisioned within a resource group. In this example, there is only one. Each provider has its own constraints for what is required. There are some common fields, however. In the example above, there is name9, role10, and count11.

Note

The role relates to the ansible role used to perform provisioning. In this case, that’s the dummy_node role. But many providers have multiple roles.

Definitions help, but lets see it in action.

Note

More detail about the PinFile can be found in the PinFiles document.

Up

It’s time to provision your first LinchPin resources.

1 [/tmp/simple]$ linchpin up
2 [WARNING]: Unable to parse /tmp/simple/localhost as an inventory source

3 [WARNING]: No inventory was parsed, only implicit localhost is available

4 Action 'up' on Target 'simple' is complete

5 ID: 10
6 Action: up

7 Target Run ID uHash Exit Code

8 simple 2 3a4038 0

In just a few seconds, the command will finish. Because the simple target provides only the dummy_node resource, no actual instances are provisioned. However, a representation can be found at /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-3a4038-0.example.net
web-3a4038-1.example.net

More importantly, there are several other things to note. First off, The linchpin command has two basic actions, up and destroy. Each should be pretty self-explanatory.

Summary

Upon completion of every action, there is a summary that is provided. This summary provides details which can be used to repeat the process, or for further reporting with linchpin journal. Let’s cover the process in detail.

uHash

The Unique-ish Hash, or uHash8 provides a way for each instance to be unique within a set of resources. The uHash is used throughout LinchPin with reporting, idempotency, inventories, etc. The uHash is configurable, but defaults to a sha256 hash of some unique data, trimmed to 6 characters.

Run ID

The Run ID8 can be used for idempotency. The Run ID is used for a specific target. Passing -r <run-id> to linchpin up or linchpin destroy along with the target will provide an idempotent up or destroy action.

$ linchpin up --run-id 2 simple

.. snip ..

Action 'up' on Target 'simple' is complete

ID: 11
Action: up

Target Run ID uHash Exit Code

simple 3 3a4038 0

The thing to notice here is that the uHash is the same here as in the original up action above. This provides idempotency when provisioning.

ID

Similar to the Run ID explained above, the Transaction ID, or ID5, is provided for idempotency. If desired, the entire transaction can be repeated using this value. Unlike the Run ID, however, the Transaction ID can be used to repeat the entire transaction (multiple targets). As with Run ID, passing -t <tx-id> will provide idempotent an idempotent up or destroy action.

$ linchpin up --tx-id 10

.. snip ..

ID: 12
Action: up

Target Run ID uHash Exit Code

simple 4 3a4038 0

Note

All targets are executed when using -t/--tx-id. This differs from -r/--run-id where only one target can be supplied per Run ID. This is useful when multiple targets are executed from the PinFile.

Exit Code

A common desire is to check the exit code7. This is provided as an indicator of the action’s success or failure. Commonly, post actions are performed upon resources (eg. configure the system, adding logins, setting up security, etc.)

Destroy

To destroy the previously provisioned resources, use linchpin destroy.

$ linchpin destroy
 [WARNING]: Unable to parse /tmp/simple/localhost as an inventory source

 [WARNING]: No inventory was parsed, only implicit localhost is available

Action 'destroy' on Target 'simple' is complete

ID: 13
Action: destroy

Target Run ID uHash Exit Code

simple 5 3a4038 0

As with linchpin up, destroy provides a summary of the action taken. In this case, however, the resources have been terminated and cleaned up. With the dummy_node role, the resources are remove from the file.

$ cat /tmp/dummy.hosts
$ wc -l /tmp/dummy.hosts
0 /tmp/dummy.hosts

This concludes the introduction of the LinchPin getting started tutorial. For more information, see Examples for all Providers.

Linchpin Hooks CLI (Options)

By default, hooks run as a part of the provisioning process.
Hooks are executed in the following order:
1. preup
2. postup
3. predestroy
4. postdestroy

Since each state can have multiple hooks defined hooks linchpin provisioning process can be affected by success and failure of hook.
By default, whenever there is any failure in execution of hook the provisioning process aborts. However, this behaviour can be defined changed by two command line options –ignore-failed-hooks and –no-hooks

–ignore-failed-hooks on enabling this option the failure of hooks does not affect the provisioning process. If provisioning is successful linchpin exits with 0

–no-hooks Allows user to skip the execution of hooks

Usage:

linchpin -vvvv --creds-path ./credentials/ up --no-hooks

linchpin -vvvv --creds-path ./credentials/ destroy --no-hooks

linchpin -vvvv --creds-path ./credentials/ up --ignore-failed-hooks

linchpin -vvvv --creds-path ./credentials/ destroy --ignore-failed-hooks

Further, the above mentioned options can be configured permanently in hookflags section of linchpin.conf

[hookflags]
no_hooks = False
ignore_failed_hooks = False

Linchpin Hooks: Examples

Following document has most common examples of linchpin hooks

Example1: Running ansible based hooks on Openstack based instances

	Refer: Workspace <https://github.com/samvarankashyap/linchpin_hooks_openstack_ws>

	Pinfile:

os-server-addl-vols:
 topology:
 topology_name: os-server-inst
 resource_groups:
 - resource_group_name: os-server-addl-vols
 resource_group_type: openstack
 resource_definitions:
 - name: "database"
 role: os_server
 flavor: m1.small
 image: CentOS-7-x86_64-GenericCloud-1612
 count: 1
 keypair: testkeypair_sk
 fip_pool: 10.8.240.0
 networks:
 - e2e-openstack
 credentials:
 filename: clouds.yaml
 profile: ci-rhos
 layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 addl-vols-node:
 count: 1
 host_groups:
 - hello
 hooks:
 postup:
 actions:
 - name: osoos
 type: ansible
 context: True
 actions:
 - playbook: install_packages.yaml
 extra_vars:
 ansible_ssh_private_key_file: "testkeypair_sk.key"
 ansible_ssh_user: centos
 - playbook: git_clone.yaml
 extra_vars:
 ansible_ssh_private_key_file: "testkeypair_sk.key"
 ansible_ssh_user: centos

Example: Running Global hook ping, check_ssh, port_up on Openstack based resources

os-server-addl-vols:
 topology:
 topology_name: os-server-inst
 resource_groups:
 - resource_group_name: os-server-addl-vols
 resource_group_type: openstack
 resource_definitions:
 - name: "database"
 role: os_server
 flavor: m1.small
 image: CentOS-7-x86_64-GenericCloud-1612
 count: 1
 keypair: test_keypairsk2
 fip_pool: 10.8.240.0
 networks:
 - e2e-openstack
 credentials:
 filename: clouds.yaml
 profile: ci-rhos
 layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 addl-vols-node:
 count: 1
 host_groups:
 - hello
 hooks:
 postup:
 # check_ssh, ping and port_up are builtin hooks
 # note builtin hooks follow different structure when compared to localhooks
 - name: check_ssh
 extra_vars:
 # since checking ssh depends on logging into machine pem file, ssh_user are must
 ansible_ssh_private_key_file: /home/srallaba/.ssh/test_keypairsk2.key
 ansible_ssh_user: centos
 ansible_ssh_common_args: "'-o StrictHostKeyChecking=no'"
 ansible_python_interpreter: "/usr/bin/python"
 - name: ping

Example3: Running python based hook on dummy workspace

	Workspace tree:

.

├── credentials
├── hooks
│ └── python
│ └── test_python
│ └── test.py
├── inventories
├── layouts
│ └── dummy-layout.yml
├── linchpin.conf
├── PinFile
├── resources
└── topologies

	Pinfile:

	dummy_target:
	
	topology:
	topology_name: “dummy”
resource_groups:
- resource_group_name: “dummy”

resource_group_type: “dummy”
resource_definitions:
- role: “dummy_node”

name: “web”
count: 1

	layout:
	
	inventory_layout:
	
	vars:
	hostname: __IP__

	hosts:
	
	example-node:
	count: 1
host_groups:

	example

	hooks:
	
	preup:
	
	name: test_python
type: python
context: False
actions:
- test.py hello hi # hello hi will be command line parameters parameters passed to script test.py

Linchpin Custom Action Managers

Linchpin custom action managers:

In linchpin, ActionManagers are set of python interfaces responsible for execution of linchpin hook based on their type. There are two types of ActionManagers builtins and custom.

Here’s a list of built-in Action Managers:

	shell: Allows either inline shell commands or an executable shell script

	python: Executes a Python script

	ansible: Executes an Ansible playbook, allowing passing of a vars_file and extra_vars represented as a Python dict

	nodejs: Executes a Node.js script

	ruby: Executes a Ruby script

In addition to the above action managers, User can define their custom action manager. custom/userdefined action managers are helpful when there is a specific runtime end user would like to make use of for executing a hook.

For example, if linchpin end user would like to use a “xyz” language based runtime or a custom command to be run when certain paramters are passed to a hook. They can do it with help of hook based on custom_action_manager.

Consider the following dummy workspace example for custom_action_manager:

.
├── credentials
├── hooks
│ ├── custom
│ │ └── somecustomhook
│ │ ├── custom_action_manager.py
│ │ ├── custom_action_manager.pyc
│ │ └── test_custom.py
├── inventories
├── layouts
├── linchpin.conf
├── linchpin.log
├── localhost
├── PinFile
├── resources
└── topologies
 └── dummy-topology.yml

dummy_target:
 topology:
 topology_name: "dummy"
 resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 - role: "dummy_node"
 name: "web"
 count: 1
 layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 example-node:
 count: 1
 host_groups:
 - example
 hooks:
 postup:
 - name: somecustomhook
 type: custom
 action_manager: custom_action_manager.py
 # action_manager: /path/to/manager
 # if not absolute path
 # linchpin searches in hooks folder configured
 context: True
 actions:
 - script: some_script.go

As you can see in the above structure the custom hook follows the same structure of a userdefined hook. However, we also need to add python interface custom_action_manager.py (which can be named any) within thehooks folder or the absolute path to the python file is to be mentioned in the Pinfile

In order to write a custom_action_manager one has to implement builtin linchpin ActionManager class overriding the following functions:

	validate: (optional): validate schema for hook designed

	load: How to load the context parameters

	execute: Responsible for executing the files based on the parameters

Once the above functions are implemented the class file can be included in Pinfile.

Following is an example for the python interface implemented:

import os
import yaml
import json

from cerberus import Validator

from linchpin.exceptions import HookError
from linchpin.hooks.action_managers.action_manager import ActionManager

class CustomActionManager(ActionManager):

 def __init__(self, name, action_data, target_data, **kwargs):

 """
 The following is an example for CustomActionManager
 AnsibleActionManager constructor
 :param name: Name of Action Manager , (ie., ansible)
 :param action_data: dictionary of action_block
 consists of set of actions
 example:
 - name: nameofthehook
 type: custom
 actions:
 - script: test_playbook.yaml
 :param target_data: Target specific data defined in PinFile
 :param kwargs: anyother keyword args passed as metadata
 """

 self.name = name
 self.action_data = action_data
 self.target_data = target_data
 self.context = kwargs.get("context", True)
 self.kwargs = kwargs

 def validate(self):

 """
 Validates the action_block based on the cerberus schema
 example:: ansible_action_block::::
 - name: nameofthehook
 type: customhook
 actions:
 - script: test_playbook.yaml
 """
 """
 schema = {
 'name': {'type': 'string', 'required': True},
 'type': {'type': 'string', 'allowed': ['custom']},
 'path': {'type': 'string', 'required': False},
 'context': {'type': 'boolean', 'required': False},
 'actions': {
 'type': 'list',
 'schema': {
 'type': 'dict',
 'schema': {
 'script': {'type': 'string', 'required': True}
 }
 },
 'required': True
 }
 }

 v = Validator(schema)
 status = v.validate(self.action_data)

 if not status:
 raise HookError("Invalid syntax: {0}".format((v.errors)))
 else:
 return status

 def load(self):

 """
 Loads the ansible specific managers and loaders
 """
 return True

 def get_ctx_params(self):

 """
 Reformats the ansible specific context variables
 """

 ctx_params = {}
 ctx_params["resource_file"] = (
 self.target_data.get("resource_file", None))
 ctx_params["layout_file"] = self.target_data.get("layout_file", None)
 ctx_params["inventory_file"] = (
 self.target_data.get("inventory_file", None))

 return ctx_params

 def execute(self):

 """
 Executes the action_block in the PinFile
 The following logic just prints out path of the script being used
 """

 self.load()
 extra_vars = {}
 runners = []

 print("This is the custom hook that runs custom logic")

 for action in self.action_data["actions"]:
 path = self.action_data["path"]
 script = action.get("script")
 print(script)
 print(path)

Tutorials

There are several tutorials available to help you learn how to use LinchPin.

	Provisioning AWS EC2 with LinchPin

	Provisioning Beaker Server with LinchPin

	Provisioning OpenStack Server with LinchPin

Provisioning AWS EC2 with LinchPin

LinchPin can be used to provision compute instances on Amazon Web Services. If you need to familiarize yourself with EC2, read this [https://docs.aws.amazon.com/ec2/index.html#lang/en_us]. Now let’s step through the process of creating a new workspace for provisioning EC2

Fetch

It is possible that you want to access a workspace that already exists. If that workspace exists online, linchpin fetch can be used to clone the repository. For example, the OpenShift on OpenStack example from release 1.7.2 in the linchpin repository can be cloned as follows:

$ linchpin fetch --root docs/source/examples/workspaces openshift-on-openstack --branch 1.7.2 --dest ./fetch-example https://github.com/CentOS-PaaS-SIG/linchpin

You can even choose to fetch only a certain component of the workspace. For example, if you only wish to fetch the topologies you can add --type topologies. If you were able to fetch a complete workspace, you can skip to Up

Initialization

Assuming you are creating a workspace from scratch, you can run linchpin init to initialize a workspace. The following line of code will create a linchpin.conf, dummy PinFile, and README.rst in a directory called “simple”

$ linchpin init simple

The PinFile contains a single target, called simple, which contains a topology but no layout. A group of related provisioning tasks is called a target. Each target has a topology, which can contain many resource groups, and an optional layout. We’ll explain what each of those means later on in further detail

Creating a Topology

Now that we have a PinFile, its time to add the code for an AWS EC2 instance. Edit your PinFile so it looks like the one below.

simple:
 topology:
 topology_name: simple
 resource_groups:
 - resource_group_name: aws_simple
 resource_group_type: aws
 resource_definitions:
 - name: simple_ec2
 role: aws_ec2
 flavor: m1.small
 count: 1

There are a number of other fields available for these two roles. Information about those fields as well as the other AWS roles can be found on the AWS provider page.

A resource group is a group of resources related to a single provider. In this example we have an AWS resource group that defines one type of AWS resources. We could also define an OpenStack resource group below it that provisions a handful of OpenStack Server nodes. A single resource group can contain many resource definitions. A resource definition details the requirements for a specific resource. We could add another resource definition to this topology to create a security group for our EC2 nodes. Multiple resources can be provisioned from a single resource definition by editing the count field, but all non-unique properties of the resources will be identical. So the flavor will be the same, but each node will have a unique name. The name will be {{ name }}_0, {{ name }}_1, etc. from 0 to count.

Credentials

Finally, we need to add credentials to the resource group. AWS provides several ways to provide credentials. LinchPin supports some of these methods for passing credentials for use with AWS resources.

One method to provide AWS credentials that can be loaded by LinchPin is to use
the INI format that the AWS CLI tool [https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html]
uses.

Credentials File

An example credentials file may look like this for aws.

$ cat aws.key
[default]
aws_access_key_id=ARYA4IS3THE3NO7FACEB
aws_secret_access_key=0Hy3x899u93G3xXRkeZK444MITtfl668Bobbygls

[herlo_aws1_herlo]
aws_access_key_id=JON6SNOW8HAS7A3WOLF8
aws_secret_access_key=Te4cUl24FtBELL4blowSx9odd0eFp2Aq30+7tHx9

See also

providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first
is which credentials to use. The second is where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are
described by specifying the file, then the profile. As shown above, the
filename is ‘aws.key’. The user could pick either profile in that file.

topology_name: ec2-new
resource_groups:
 - resource_group_name: "aws"
 resource_group_type: "aws"
 resource_definitions:
 - name: demo-day
 flavor: m1.small
 role: aws_ec2
 region: us-east-1
 image: ami-984189e2
 count: 1
 credentials:
 filename: aws.key
 profile: default

The important part in the above topology is the credentials section. Adding
credentials like this will look up, and use the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is
~/.config/linchpin.

Hint

The default_credentials_path value uses the interpolated
:dirs1.5:`default_config_path <workspace/linchpin.conf#L22>` value, and
can be overridden in the :docs1.5:`linchpin.conf`.

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up aws-ec2-new

Note

The aws.key file could be placed in the
default_credentials_path. In that case passing
--creds-path would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up aws-ec2-new

Creating a Layout

LinchPin can use layouts to describe what an Ansible inventory might look like after provisioning. Layouts can include information such as IP addresses, zones, and FQDNs. Under the simple key, put the following data:

layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 server:
 count: 1
 host_groups:
 - frontent
 host_groups:
 all:
 vars:
 ansible_user: root
 frontend:
 vars:
 ansible_ssh_common_args: -o StrictHostKeyChecking=no

After provisioning the hosts, LinchPin will through each host type in the inventory_layout, pop count hosts off of the list, and add them to the relevant host groups. The host_groups section of the layout is used to set environment variables for each of the hosts in a given host group

Up

Once the resources have been defined, LinchPin can be run as follows:

$ linchpin --workspace . -vv up simple

The --workspace flag references the relevant workspace. By default, the workspace is
the current working directory. If the PinFile has a name (or path) other than {{workspace}}/PinFile,
the --pinfile flag can override that. Finally, -vv sets a verbosity level of 2. As
with Ansible, the verbosity can be set between 0 and 4.

If the provisioning was successful, you should see some output at the bottom that looks something like this:

ID: 122
Action: up

Target Run ID uHash Exit Code

simple 1 3a0c59 0

You can use that uhash value to get the inventory generated according to the layout we discussed above. The file will be titled inventories/${target}-${uhash} but you can change this naming schema by editing the inventory_file field in the inventory_layout section of the layout. When linchpin up is run, each target will generate its own inventory layout. The inventories folder and inventory_path can also be set in the evars section of linchpin.conf

Destroy

At some point you’ll no longer need the machines you provisioned. You can destroy the provisioned machines with linchpin destroy. However, you may not want to remove every single target from your last provision. For example, lets say you ran the simple provision above, then ran a few others. You could use the transaction ID, labeled “ID” above, to do so.

$ linchpin -vv destroy -t 122

You may also have provisioned multiple targets at once. If you only want to destroy one of them, you can do so with the name of the target and the run ID.

$ linchpin -vv destroy -r 1 simple

Journal

Each time you provision or destroy resources with LinchPin, information about the run is stored in the Run Database, or RunDB. Data from the RunDB can be printed using linchpin journal. This allows you to keep track of which resources you have provisioned but haven’t destroyed and gather the transaction and run IDs for those resources. To list each resource by target, simply run:

$ linchpin journal

Target: simple
run_id action uhash rc
--
2 destroy bb8064 0
1 up bb8064 0

Target: beaker-openstack
run_id action uhash rc
--
2 destroy b1e364 2
1 up b1e364 2

Target: os-subnet
run_id action uhash rc
--
3 destroy c619ac 0
2 up c619ac 0
1 destroy ab9d81 0

As you can see, linchpin printed out the run data for the simple target that we provisioned and destroyed above, but also printed out information for a number of other targets which had been provisioned recently. You can provide a target as an argument to only print out the given target. You can also group by transaction id with the flag --view tx. Click here to read more about linchpin journal

Provisioning Beaker Server with LinchPin

LinchPin can be used to provision compute instances on Beaker. If you need to familiarize yourself with Beaker Server, read this [https://beaker-project.org/docs/server-api/]. Now let’s step through the process of creating a new workspace for provisioning Beaker

Fetch

It is possible that you want to access a workspace that already exists. If that workspace exists online, linchpin fetch can be used to clone the repository. For example, the OpenShift on OpenStack example from release 1.7.2 in the linchpin repository can be cloned as follows:

$ linchpin fetch --root docs/source/examples/workspaces openshift-on-openstack --branch 1.7.2 --dest ./fetch-example https://github.com/CentOS-PaaS-SIG/linchpin

You can even choose to fetch only a certain component of the workspace. For example, if you only wish to fetch the topologies you can add --type topologies. If you were able to fetch a complete workspace, you can skip to Up

Initialization

Assuming you are creating a workspace from scratch, you can run linchpin init to initialize a workspace. The following line of code will create a linchpin.conf, dummy PinFile, and README.rst in a directory called “simple”

$ linchpin init simple

The PinFile contains a single target, called simple, which contains a topology but no layout. A group of related provisioning tasks is called a target. Each target has a topology, which can contain many resource groups, and an optional layout. We’ll explain what each of those means later on in further detail

Creating a Topology

Now that we have a PinFile, its time to add the code for a Beaker server. Edit your PinFile so it looks like the one below.

simple:
 topology:
 topology_name: simple
 resource_groups:
 - resource_group_name: bkr_simple
 resource_group_type: beaker
 resource_definitions:
 - role: bkr_server
 recipesets:
 - distro: RHEL-7.5
 name: rhelsimple
 arch: x86_64
 variant: Server
 count: 1
 hostrequires:
 - rawxml: '<key_value key="model" op="=" value="KVM"/>'

There are a number of other fields available for these two roles. Information about those fields as well as the other Beaker roles can be found on the Beaker provider page.

A resource group is a group of resources related to a single provider. In this example we have a Beaker resource group that defines two different types of Beaker resources. We could also define an AWS resource group below it that provisions a handful of EC2 nodes. A single resource group can contain many resource definitions. A resource definition details the requirements for a specific resource. Multiple resources can be provisioned from a single resource definition by editing the count field, but all non-unique properties of the resources will be identical. So the distro will be the same, but each node will have a unique name. The name will be {{ name }}_0, {{ name }}_1, etc. from 0 to count.

Credentials

Finally, we need to add credentials to the resource group.

Beaker provides several ways to authenticate. LinchPin supports these methods.

	Kerberos

	OAuth2

Note

LinchPin doesn’t support the username/password authentication
mechanism. It’s also not recommended by the Beaker Project, except for
initial setup.

Creating a Layout

LinchPin can use layouts to describe what an Ansible inventory might look like after provisioning. Layouts can include information such as IP addresses, zones, and FQDNs. Under the simple key, put the following data:

layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 server:
 count: 1
 host_groups:
 - frontent
 host_groups:
 all:
 vars:
 ansible_user: root
 frontend:
 vars:
 ansible_ssh_common_args: -o StrictHostKeyChecking=no

After provisioning the hosts, LinchPin will through each host type in the inventory_layout, pop count hosts off of the list, and add them to the relevant host groups. The host_groups section of the layout is used to set environment variables for each of the hosts in a given host group

Up

Once the resources have been defined, LinchPin can be run as follows:

$ linchpin --workspace . -vv up simple

The --workspace flag references the relevant workspace. By default, the workspace is
the current working directory. If the PinFile has a name (or path) other than {{workspace}}/PinFile,
the --pinfile flag can override that. Finally, -vv sets a verbosity level of 2. As
with Ansible, the verbosity can be set between 0 and 4.

If the provisioning was successful, you should see some output at the bottom that looks something like this:

ID: 122
Action: up

Target Run ID uHash Exit Code

simple 1 3a0c59 0

You can use that uhash value to get the inventory generated according to the layout we discussed above. The file will be titled inventories/${target}-${uhash} but you can change this naming schema by editing the inventory_file field in the inventory_layout section of the layout. When linchpin up is run, each target will generate its own inventory layout. The inventories folder and inventory_path can also be set in the evars section of linchpin.conf

Destroy

At some point you’ll no longer need the machines you provisioned. You can destroy the provisioned machines with linchpin destroy. However, you may not want to remove every single target from your last provision. For example, lets say you ran the simple provision above, then ran a few others. You could use the transaction ID, labeled “ID” above, to do so.

$ linchpin -vv destroy -t 122

You may also have provisioned multiple targets at once. If you only want to destroy one of them, you can do so with the name of the target and the run ID.

$ linchpin -vv destroy -r 1 simple

Journal

Each time you provision or destroy resources with LinchPin, information about the run is stored in the Run Database, or RunDB. Data from the RunDB can be printed using linchpin journal. This allows you to keep track of which resources you have provisioned but haven’t destroyed and gather the transaction and run IDs for those resources. To list each resource by target, simply run:

$ linchpin journal

Target: simple
run_id action uhash rc
--
2 destroy bb8064 0
1 up bb8064 0

Target: beaker-openstack
run_id action uhash rc
--
2 destroy b1e364 2
1 up b1e364 2

Target: os-subnet
run_id action uhash rc
--
3 destroy c619ac 0
2 up c619ac 0
1 destroy ab9d81 0

As you can see, linchpin printed out the run data for the simple target that we provisioned and destroyed above, but also printed out information for a number of other targets which had been provisioned recently. You can provide a target as an argument to only print out the given target. You can also group by transaction id with the flag --view tx. Click here to read more about linchpin journal

Provisioning OpenStack Server with LinchPin

LinchPin can be used to provision compute instances on OpenStack. If you need to familiarize yourself with OpenStack Server, read this [https://developer.openstack.org/api-guide/compute/server_concepts.html]. Now let’s step through the process of creating a new workspace for provisioning OpenStack

Fetch

It is possible that you want to access a workspace that already exists. If that workspace exists online, linchpin fetch can be used to clone the repository. For example, the OpenShift on OpenStack example from release 1.7.2 in the linchpin repository can be cloned as follows:

$ linchpin fetch --root docs/source/examples/workspaces openshift-on-openstack --branch 1.7.2 --dest ./fetch-example https://github.com/CentOS-PaaS-SIG/linchpin

You can even choose to fetch only a certain component of the workspace. For example, if you only wish to fetch the topologies you can add --type topologies. If you were able to fetch a complete workspace, you can skip to Up

Initialization

Assuming you are creating a workspace from scratch, you can run linchpin init to initialize a workspace. The following line of code will create a linchpin.conf, dummy PinFile, and README.rst in a directory called “simple”

$ linchpin init simple

The PinFile contains a single target, called simple, which contains a topology but no layout. A group of related provisioning tasks is called a target. Each target has a topology, which can contain many resource groups, and an optional layout. We’ll explain what each of those means later on in further detail

Creating a Topology

Now that we have a PinFile, its time to add the code for an OpenStack server. Edit your PinFile so it looks like the one below.

simple:
 topology:
 topology_name: simple
 resource_groups:
 - resource_group_name: os_simple
 resource_group_type: openstack
 resource_definitions:
 - name: simple_keypair
 role: os_keypair
 - name: simple_server
 role: os_server
 flavor: m1.small
 keypair: simple_keypair
 count: 1

There are a number of other fields available for these two roles. Information about those fields as well as the other OpenStack roles can be found on the OpenStack provider page.

A resource group is a group of resources related to a single provider. In this example we have an openstack resource group that defines two different types of openstack resources. We could also define an AWS resource group below it that provisions a handful of EC2 nodes. A single resource group can contain many resource definitions. A resource definition details the requirements for a specific resource. Multiple resources can be provisioned from a single resource definition by editing the count field, but all non-unique properties of the resources will be identical.

Credentials

Finally, we need to add credentials to the resource group. OpenStack provides several ways to provide credentials. LinchPin supports some of these methods for passing credentials for use with OpenStack resources.

Environment Variables

LinchPin honors the OpenStack environment variables such as $OS_USERNAME,
$OS_PROJECT_NAME, etc.

See the OpenStack documentation cli documentation [https://docs.openstack.org/python-openstackclient/pike/cli/man/openstack.html#manpage]
for details.

Note

No credentials files are needed for this method. When LinchPin calls
the OpenStack provider, the environment variables are automatically picked
up by the OpenStack Ansible modules, and passed to OpenStack for
authentication.

Using OpenStack Credentials

OpenStack provides a simple file structure using a file called
clouds.yaml [https://docs.openstack.org/os-client-config/latest/user/configuration.html],
to provide authentication to a particular tenant. A single clouds.yaml file might contain several entries.

clouds:
 devstack:
 auth:
 auth_url: http://192.168.122.10:35357/
 project_name: demo
 username: demo
 password: 0penstack
 region_name: RegionOne
 trystack:
 auth:
 auth_url: http://auth.trystack.com:8080/
 project_name: trystack
 username: herlo-trystack-3855e889
 password: thepasswordissecrte

Using this mechanism requires that credentials data be passed into LinchPin.

An OpenStack topology can have a credentials section for each
resource_group, which requires the filename, and the profile name.

It’s worth noting that we can’t give you credentials to use, so you’ll have to provide
your own filename and profile here. By default, LinchPin searches for the filename in
{{ workspace}}/credentials but can be made to search other places by setting the
evars.default_credentials_path variable in your linchpin.conf. The credentials
path can also be overridden by using the --creds-path flag.

topology_name: topo
resource_groups:
 - resource_group_name: openstack
 resource_group_type: openstack
 resource_definitions:

 .. snip ..

 credentials:
 filename: clouds.yaml
 profile: devstack

Creating a Layout

LinchPin can use layouts to describe what an Ansible inventory might look like after provisioning. Layouts can include information such as IP addresses, zones, and FQDNs. Under the simple key, put the following data:

layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 server:
 count: 1
 host_groups:
 - frontent
 host_groups:
 all:
 vars:
 ansible_user: root
 frontend:
 vars:
 ansible_ssh_common_args: -o StrictHostKeyChecking=no

After provisioning the hosts, LinchPin will through each host type in the inventory_layout, pop count hosts off of the list, and add them to the relevant host groups. The host_groups section of the layout is used to set environment variables for each of the hosts in a given host group

Up

Once the resources have been defined, LinchPin can be run as follows:

$ linchpin --workspace . -vv up simple

The --workspace flag references the relevant workspace. By default, the workspace is
the current working directory. If the PinFile has a name (or path) other than {{workspace}}/PinFile,
the --pinfile flag can override that. Finally, -vv sets a verbosity level of 2. As
with Ansible, the verbosity can be set between 0 and 4.

If the provisioning was successful, you should see some output at the bottom that looks something like this:

ID: 122
Action: up

Target Run ID uHash Exit Code

simple 1 3a0c59 0

You can use that uhash value to get the inventory generated according to the layout we discussed above. The file will be titled inventories/${target}-${uhash} but you can change this naming schema by editing the inventory_file field in the inventory_layout section of the layout. When linchpin up is run, each target will generate its own inventory layout. The inventories folder and inventory_path can also be set in the evars section of linchpin.conf

Destroy

At some point you’ll no longer need the machines you provisioned. You can destroy the provisioned machines with linchpin destroy. However, you may not want to remove every single target from your last provision. For example, lets say you ran the simple provision above, then ran a few others. You could use the transaction ID, labeled “ID” above, to do so.

$ linchpin -vv destroy -t 122

You may also have provisioned multiple targets at once. If you only want to destroy one of them, you can do so with the name of the target and the run ID.

$ linchpin -vv destroy -r 1 simple

Journal

Each time you provision or destroy resources with LinchPin, information about the run is stored in the Run Database, or RunDB. Data from the RunDB can be printed using linchpin journal. This allows you to keep track of which resources you have provisioned but haven’t destroyed and gather the transaction and run IDs for those resources. To list each resource by target, simply run:

$ linchpin journal

Target: simple
run_id action uhash rc
--
2 destroy bb8064 0
1 up bb8064 0

Target: beaker-openstack
run_id action uhash rc
--
2 destroy b1e364 2
1 up b1e364 2

Target: os-subnet
run_id action uhash rc
--
3 destroy c619ac 0
2 up c619ac 0
1 destroy ab9d81 0

As you can see, linchpin printed out the run data for the simple target that we provisioned and destroyed above, but also printed out information for a number of other targets which had been provisioned recently. You can provide a target as an argument to only print out the given target. You can also group by transaction id with the flag --view tx. Click here to read more about linchpin journal

Linchpin Hooks CLI (Options)

By default, hooks run as a part of the provisioning process.
Hooks are executed in the following order:
1. preup
2. postup
3. predestroy
4. postdestroy

Since each state can have multiple hooks defined hooks linchpin provisioning process can be affected by success and failure of hook.
By default, whenever there is any failure in execution of hook the provisioning process aborts. However, this behaviour can be defined changed by two command line options –ignore-failed-hooks and –no-hooks

–ignore-failed-hooks on enabling this option the failure of hooks does not affect the provisioning process. If provisioning is successful linchpin exits with 0

–no-hooks Allows user to skip the execution of hooks

Usage:

linchpin -vvvv --creds-path ./credentials/ up --no-hooks

linchpin -vvvv --creds-path ./credentials/ destroy --no-hooks

linchpin -vvvv --creds-path ./credentials/ up --ignore-failed-hooks

linchpin -vvvv --creds-path ./credentials/ destroy --ignore-failed-hooks

Further, the above mentioned options can be configured permanently in hookflags section of linchpin.conf

[hookflags]
no_hooks = False
ignore_failed_hooks = False

Linchpin Hooks: Examples

Following document has most common examples of linchpin hooks

Example1: Running ansible based hooks on Openstack based instances

	Refer: Workspace <https://github.com/samvarankashyap/linchpin_hooks_openstack_ws>

	Pinfile:

os-server-addl-vols:
 topology:
 topology_name: os-server-inst
 resource_groups:
 - resource_group_name: os-server-addl-vols
 resource_group_type: openstack
 resource_definitions:
 - name: "database"
 role: os_server
 flavor: m1.small
 image: CentOS-7-x86_64-GenericCloud-1612
 count: 1
 keypair: testkeypair_sk
 fip_pool: 10.8.240.0
 networks:
 - e2e-openstack
 credentials:
 filename: clouds.yaml
 profile: ci-rhos
 layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 addl-vols-node:
 count: 1
 host_groups:
 - hello
 hooks:
 postup:
 actions:
 - name: osoos
 type: ansible
 context: True
 actions:
 - playbook: install_packages.yaml
 extra_vars:
 ansible_ssh_private_key_file: "testkeypair_sk.key"
 ansible_ssh_user: centos
 - playbook: git_clone.yaml
 extra_vars:
 ansible_ssh_private_key_file: "testkeypair_sk.key"
 ansible_ssh_user: centos

Example: Running Global hook ping, check_ssh, port_up on Openstack based resources

os-server-addl-vols:
 topology:
 topology_name: os-server-inst
 resource_groups:
 - resource_group_name: os-server-addl-vols
 resource_group_type: openstack
 resource_definitions:
 - name: "database"
 role: os_server
 flavor: m1.small
 image: CentOS-7-x86_64-GenericCloud-1612
 count: 1
 keypair: test_keypairsk2
 fip_pool: 10.8.240.0
 networks:
 - e2e-openstack
 credentials:
 filename: clouds.yaml
 profile: ci-rhos
 layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 addl-vols-node:
 count: 1
 host_groups:
 - hello
 hooks:
 postup:
 # check_ssh, ping and port_up are builtin hooks
 # note builtin hooks follow different structure when compared to localhooks
 - name: check_ssh
 extra_vars:
 # since checking ssh depends on logging into machine pem file, ssh_user are must
 ansible_ssh_private_key_file: /home/srallaba/.ssh/test_keypairsk2.key
 ansible_ssh_user: centos
 ansible_ssh_common_args: "'-o StrictHostKeyChecking=no'"
 ansible_python_interpreter: "/usr/bin/python"
 - name: ping

Example3: Running python based hook on dummy workspace

	Workspace tree:

.

├── credentials
├── hooks
│ └── python
│ └── test_python
│ └── test.py
├── inventories
├── layouts
│ └── dummy-layout.yml
├── linchpin.conf
├── PinFile
├── resources
└── topologies

	Pinfile:

	dummy_target:
	
	topology:
	topology_name: “dummy”
resource_groups:
- resource_group_name: “dummy”

resource_group_type: “dummy”
resource_definitions:
- role: “dummy_node”

name: “web”
count: 1

	layout:
	
	inventory_layout:
	
	vars:
	hostname: __IP__

	hosts:
	
	example-node:
	count: 1
host_groups:

	example

	hooks:
	
	preup:
	
	name: test_python
type: python
context: False
actions:
- test.py hello hi # hello hi will be command line parameters parameters passed to script test.py

Linchpin Custom Action Managers

Linchpin custom action managers:

In linchpin, ActionManagers are set of python interfaces responsible for execution of linchpin hook based on their type. There are two types of ActionManagers builtins and custom.

Here’s a list of built-in Action Managers:

	shell: Allows either inline shell commands or an executable shell script

	python: Executes a Python script

	ansible: Executes an Ansible playbook, allowing passing of a vars_file and extra_vars represented as a Python dict

	nodejs: Executes a Node.js script

	ruby: Executes a Ruby script

In addition to the above action managers, User can define their custom action manager. custom/userdefined action managers are helpful when there is a specific runtime end user would like to make use of for executing a hook.

For example, if linchpin end user would like to use a “xyz” language based runtime or a custom command to be run when certain paramters are passed to a hook. They can do it with help of hook based on custom_action_manager.

Consider the following dummy workspace example for custom_action_manager:

.
├── credentials
├── hooks
│ ├── custom
│ │ └── somecustomhook
│ │ ├── custom_action_manager.py
│ │ ├── custom_action_manager.pyc
│ │ └── test_custom.py
├── inventories
├── layouts
├── linchpin.conf
├── linchpin.log
├── localhost
├── PinFile
├── resources
└── topologies
 └── dummy-topology.yml

dummy_target:
 topology:
 topology_name: "dummy"
 resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 - role: "dummy_node"
 name: "web"
 count: 1
 layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 example-node:
 count: 1
 host_groups:
 - example
 hooks:
 postup:
 - name: somecustomhook
 type: custom
 action_manager: custom_action_manager.py
 # action_manager: /path/to/manager
 # if not absolute path
 # linchpin searches in hooks folder configured
 context: True
 actions:
 - script: some_script.go

As you can see in the above structure the custom hook follows the same structure of a userdefined hook. However, we also need to add python interface custom_action_manager.py (which can be named any) within thehooks folder or the absolute path to the python file is to be mentioned in the Pinfile

In order to write a custom_action_manager one has to implement builtin linchpin ActionManager class overriding the following functions:

	validate: (optional): validate schema for hook designed

	load: How to load the context parameters

	execute: Responsible for executing the files based on the parameters

Once the above functions are implemented the class file can be included in Pinfile.

Following is an example for the python interface implemented:

import os
import yaml
import json

from cerberus import Validator

from linchpin.exceptions import HookError
from linchpin.hooks.action_managers.action_manager import ActionManager

class CustomActionManager(ActionManager):

 def __init__(self, name, action_data, target_data, **kwargs):

 """
 The following is an example for CustomActionManager
 AnsibleActionManager constructor
 :param name: Name of Action Manager , (ie., ansible)
 :param action_data: dictionary of action_block
 consists of set of actions
 example:
 - name: nameofthehook
 type: custom
 actions:
 - script: test_playbook.yaml
 :param target_data: Target specific data defined in PinFile
 :param kwargs: anyother keyword args passed as metadata
 """

 self.name = name
 self.action_data = action_data
 self.target_data = target_data
 self.context = kwargs.get("context", True)
 self.kwargs = kwargs

 def validate(self):

 """
 Validates the action_block based on the cerberus schema
 example:: ansible_action_block::::
 - name: nameofthehook
 type: customhook
 actions:
 - script: test_playbook.yaml
 """
 """
 schema = {
 'name': {'type': 'string', 'required': True},
 'type': {'type': 'string', 'allowed': ['custom']},
 'path': {'type': 'string', 'required': False},
 'context': {'type': 'boolean', 'required': False},
 'actions': {
 'type': 'list',
 'schema': {
 'type': 'dict',
 'schema': {
 'script': {'type': 'string', 'required': True}
 }
 },
 'required': True
 }
 }

 v = Validator(schema)
 status = v.validate(self.action_data)

 if not status:
 raise HookError("Invalid syntax: {0}".format((v.errors)))
 else:
 return status

 def load(self):

 """
 Loads the ansible specific managers and loaders
 """
 return True

 def get_ctx_params(self):

 """
 Reformats the ansible specific context variables
 """

 ctx_params = {}
 ctx_params["resource_file"] = (
 self.target_data.get("resource_file", None))
 ctx_params["layout_file"] = self.target_data.get("layout_file", None)
 ctx_params["inventory_file"] = (
 self.target_data.get("inventory_file", None))

 return ctx_params

 def execute(self):

 """
 Executes the action_block in the PinFile
 The following logic just prints out path of the script being used
 """

 self.load()
 extra_vars = {}
 runners = []

 print("This is the custom hook that runs custom logic")

 for action in self.action_data["actions"]:
 path = self.action_data["path"]
 script = action.get("script")
 print(script)
 print(path)

Monitor and Progress Bar

Linchpin execution of Ansible is mostly a black box, where Ansible receives
input from Linchpin and returns expected output. The output is received in
a form of files and database changes. However, in version 1.9.1 there was
another channel of communication was created, a message bus. Before version
1.9.1, Linchpin was calling Ansible in a synchronize mode, that is once Ansible
was called, Linchpin was waiting for it to finish the execution. To support
progress bar, ZMQ message bus and multiprocessing was added. From version
1.9.1, Linchpin by default runs Ansible in multiprocess with a “monitoring”
process. The ZMQ message bus was added to Ansible using plugins, and to the
monitoring process. That means that Ansible, on different events or steps will
able to communicate with Linchpin. For progress bar it meant that Ansible could
update Linchpin with its progress in details, which allows better user
experience and understanding of deployment or tear down progress. The new
functionality is limited to provisioning process (‘up’ and ‘destroy’) and can
be disabled or limited with options –no-monitor or –no-progress:

–no-monitor will disable multiprocessing entirely and thus also disables the
progress bar.

–no-progress will cancel the progress bar which could be helpful in shell
scripts or in CI, but the monitoring/multiprocessing remains.

Examples:

Linchpin runs with multiprocessing and progress bar enabled
linchpin up

Linchpin runs in verbose mode, progress bar disabled
linchpin -vvvv up

Linchpin runs with disabled multiprocessing and without progress bar
linchpin --no-monitor up

Linchpin runs without progress bar but with multiprocessing
linchpin up --no-progress

The progress bar and multiprocessing can be disabled via linchpin.conf
settings file:

[progress_bar]
no_progress = True

[monitor]
no_monitor = True

Tutorials

There are several tutorials available to help you learn how to use LinchPin.

	Provisioning AWS EC2 with LinchPin

	Provisioning Beaker Server with LinchPin

	Provisioning OpenStack Server with LinchPin

Provisioning AWS EC2 with LinchPin

LinchPin can be used to provision compute instances on Amazon Web Services. If you need to familiarize yourself with EC2, read this [https://docs.aws.amazon.com/ec2/index.html#lang/en_us]. Now let’s step through the process of creating a new workspace for provisioning EC2

Fetch

It is possible that you want to access a workspace that already exists. If that workspace exists online, linchpin fetch can be used to clone the repository. For example, the OpenShift on OpenStack example from release 1.7.2 in the linchpin repository can be cloned as follows:

$ linchpin fetch --root docs/source/examples/workspaces openshift-on-openstack --branch 1.7.2 --dest ./fetch-example https://github.com/CentOS-PaaS-SIG/linchpin

You can even choose to fetch only a certain component of the workspace. For example, if you only wish to fetch the topologies you can add --type topologies. If you were able to fetch a complete workspace, you can skip to Up

Initialization

Assuming you are creating a workspace from scratch, you can run linchpin init to initialize a workspace. The following line of code will create a linchpin.conf, dummy PinFile, and README.rst in a directory called “simple”

$ linchpin init simple

The PinFile contains a single target, called simple, which contains a topology but no layout. A group of related provisioning tasks is called a target. Each target has a topology, which can contain many resource groups, and an optional layout. We’ll explain what each of those means later on in further detail

Creating a Topology

Now that we have a PinFile, its time to add the code for an AWS EC2 instance. Edit your PinFile so it looks like the one below.

simple:
 topology:
 topology_name: simple
 resource_groups:
 - resource_group_name: aws_simple
 resource_group_type: aws
 resource_definitions:
 - name: simple_ec2
 role: aws_ec2
 flavor: m1.small
 count: 1

There are a number of other fields available for these two roles. Information about those fields as well as the other AWS roles can be found on the AWS provider page.

A resource group is a group of resources related to a single provider. In this example we have an AWS resource group that defines one type of AWS resources. We could also define an OpenStack resource group below it that provisions a handful of OpenStack Server nodes. A single resource group can contain many resource definitions. A resource definition details the requirements for a specific resource. We could add another resource definition to this topology to create a security group for our EC2 nodes. Multiple resources can be provisioned from a single resource definition by editing the count field, but all non-unique properties of the resources will be identical. So the flavor will be the same, but each node will have a unique name. The name will be {{ name }}_0, {{ name }}_1, etc. from 0 to count.

Credentials

Finally, we need to add credentials to the resource group. AWS provides several ways to provide credentials. LinchPin supports some of these methods for passing credentials for use with AWS resources.

One method to provide AWS credentials that can be loaded by LinchPin is to use
the INI format that the AWS CLI tool [https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html]
uses.

Credentials File

An example credentials file may look like this for aws.

$ cat aws.key
[default]
aws_access_key_id=ARYA4IS3THE3NO7FACEB
aws_secret_access_key=0Hy3x899u93G3xXRkeZK444MITtfl668Bobbygls

[herlo_aws1_herlo]
aws_access_key_id=JON6SNOW8HAS7A3WOLF8
aws_secret_access_key=Te4cUl24FtBELL4blowSx9odd0eFp2Aq30+7tHx9

See also

providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first
is which credentials to use. The second is where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are
described by specifying the file, then the profile. As shown above, the
filename is ‘aws.key’. The user could pick either profile in that file.

topology_name: ec2-new
resource_groups:
 - resource_group_name: "aws"
 resource_group_type: "aws"
 resource_definitions:
 - name: demo-day
 flavor: m1.small
 role: aws_ec2
 region: us-east-1
 image: ami-984189e2
 count: 1
 credentials:
 filename: aws.key
 profile: default

The important part in the above topology is the credentials section. Adding
credentials like this will look up, and use the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is
~/.config/linchpin.

Hint

The default_credentials_path value uses the interpolated
:dirs1.5:`default_config_path <workspace/linchpin.conf#L22>` value, and
can be overridden in the :docs1.5:`linchpin.conf`.

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up aws-ec2-new

Note

The aws.key file could be placed in the
default_credentials_path. In that case passing
--creds-path would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up aws-ec2-new

Creating a Layout

LinchPin can use layouts to describe what an Ansible inventory might look like after provisioning. Layouts can include information such as IP addresses, zones, and FQDNs. Under the simple key, put the following data:

layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 server:
 count: 1
 host_groups:
 - frontent
 host_groups:
 all:
 vars:
 ansible_user: root
 frontend:
 vars:
 ansible_ssh_common_args: -o StrictHostKeyChecking=no

After provisioning the hosts, LinchPin will through each host type in the inventory_layout, pop count hosts off of the list, and add them to the relevant host groups. The host_groups section of the layout is used to set environment variables for each of the hosts in a given host group

Up

Once the resources have been defined, LinchPin can be run as follows:

$ linchpin --workspace . -vv up simple

The --workspace flag references the relevant workspace. By default, the workspace is
the current working directory. If the PinFile has a name (or path) other than {{workspace}}/PinFile,
the --pinfile flag can override that. Finally, -vv sets a verbosity level of 2. As
with Ansible, the verbosity can be set between 0 and 4.

If the provisioning was successful, you should see some output at the bottom that looks something like this:

ID: 122
Action: up

Target Run ID uHash Exit Code

simple 1 3a0c59 0

You can use that uhash value to get the inventory generated according to the layout we discussed above. The file will be titled inventories/${target}-${uhash} but you can change this naming schema by editing the inventory_file field in the inventory_layout section of the layout. When linchpin up is run, each target will generate its own inventory layout. The inventories folder and inventory_path can also be set in the evars section of linchpin.conf

Destroy

At some point you’ll no longer need the machines you provisioned. You can destroy the provisioned machines with linchpin destroy. However, you may not want to remove every single target from your last provision. For example, lets say you ran the simple provision above, then ran a few others. You could use the transaction ID, labeled “ID” above, to do so.

$ linchpin -vv destroy -t 122

You may also have provisioned multiple targets at once. If you only want to destroy one of them, you can do so with the name of the target and the run ID.

$ linchpin -vv destroy -r 1 simple

Journal

Each time you provision or destroy resources with LinchPin, information about the run is stored in the Run Database, or RunDB. Data from the RunDB can be printed using linchpin journal. This allows you to keep track of which resources you have provisioned but haven’t destroyed and gather the transaction and run IDs for those resources. To list each resource by target, simply run:

$ linchpin journal

Target: simple
run_id action uhash rc
--
2 destroy bb8064 0
1 up bb8064 0

Target: beaker-openstack
run_id action uhash rc
--
2 destroy b1e364 2
1 up b1e364 2

Target: os-subnet
run_id action uhash rc
--
3 destroy c619ac 0
2 up c619ac 0
1 destroy ab9d81 0

As you can see, linchpin printed out the run data for the simple target that we provisioned and destroyed above, but also printed out information for a number of other targets which had been provisioned recently. You can provide a target as an argument to only print out the given target. You can also group by transaction id with the flag --view tx. Click here to read more about linchpin journal

Provisioning Beaker Server with LinchPin

LinchPin can be used to provision compute instances on Beaker. If you need to familiarize yourself with Beaker Server, read this [https://beaker-project.org/docs/server-api/]. Now let’s step through the process of creating a new workspace for provisioning Beaker

Fetch

It is possible that you want to access a workspace that already exists. If that workspace exists online, linchpin fetch can be used to clone the repository. For example, the OpenShift on OpenStack example from release 1.7.2 in the linchpin repository can be cloned as follows:

$ linchpin fetch --root docs/source/examples/workspaces openshift-on-openstack --branch 1.7.2 --dest ./fetch-example https://github.com/CentOS-PaaS-SIG/linchpin

You can even choose to fetch only a certain component of the workspace. For example, if you only wish to fetch the topologies you can add --type topologies. If you were able to fetch a complete workspace, you can skip to Up

Initialization

Assuming you are creating a workspace from scratch, you can run linchpin init to initialize a workspace. The following line of code will create a linchpin.conf, dummy PinFile, and README.rst in a directory called “simple”

$ linchpin init simple

The PinFile contains a single target, called simple, which contains a topology but no layout. A group of related provisioning tasks is called a target. Each target has a topology, which can contain many resource groups, and an optional layout. We’ll explain what each of those means later on in further detail

Creating a Topology

Now that we have a PinFile, its time to add the code for a Beaker server. Edit your PinFile so it looks like the one below.

simple:
 topology:
 topology_name: simple
 resource_groups:
 - resource_group_name: bkr_simple
 resource_group_type: beaker
 resource_definitions:
 - role: bkr_server
 recipesets:
 - distro: RHEL-7.5
 name: rhelsimple
 arch: x86_64
 variant: Server
 count: 1
 hostrequires:
 - rawxml: '<key_value key="model" op="=" value="KVM"/>'

There are a number of other fields available for these two roles. Information about those fields as well as the other Beaker roles can be found on the Beaker provider page.

A resource group is a group of resources related to a single provider. In this example we have a Beaker resource group that defines two different types of Beaker resources. We could also define an AWS resource group below it that provisions a handful of EC2 nodes. A single resource group can contain many resource definitions. A resource definition details the requirements for a specific resource. Multiple resources can be provisioned from a single resource definition by editing the count field, but all non-unique properties of the resources will be identical. So the distro will be the same, but each node will have a unique name. The name will be {{ name }}_0, {{ name }}_1, etc. from 0 to count.

Credentials

Finally, we need to add credentials to the resource group.

Beaker provides several ways to authenticate. LinchPin supports these methods.

	Kerberos

	OAuth2

Note

LinchPin doesn’t support the username/password authentication
mechanism. It’s also not recommended by the Beaker Project, except for
initial setup.

Creating a Layout

LinchPin can use layouts to describe what an Ansible inventory might look like after provisioning. Layouts can include information such as IP addresses, zones, and FQDNs. Under the simple key, put the following data:

layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 server:
 count: 1
 host_groups:
 - frontent
 host_groups:
 all:
 vars:
 ansible_user: root
 frontend:
 vars:
 ansible_ssh_common_args: -o StrictHostKeyChecking=no

After provisioning the hosts, LinchPin will through each host type in the inventory_layout, pop count hosts off of the list, and add them to the relevant host groups. The host_groups section of the layout is used to set environment variables for each of the hosts in a given host group

Up

Once the resources have been defined, LinchPin can be run as follows:

$ linchpin --workspace . -vv up simple

The --workspace flag references the relevant workspace. By default, the workspace is
the current working directory. If the PinFile has a name (or path) other than {{workspace}}/PinFile,
the --pinfile flag can override that. Finally, -vv sets a verbosity level of 2. As
with Ansible, the verbosity can be set between 0 and 4.

If the provisioning was successful, you should see some output at the bottom that looks something like this:

ID: 122
Action: up

Target Run ID uHash Exit Code

simple 1 3a0c59 0

You can use that uhash value to get the inventory generated according to the layout we discussed above. The file will be titled inventories/${target}-${uhash} but you can change this naming schema by editing the inventory_file field in the inventory_layout section of the layout. When linchpin up is run, each target will generate its own inventory layout. The inventories folder and inventory_path can also be set in the evars section of linchpin.conf

Destroy

At some point you’ll no longer need the machines you provisioned. You can destroy the provisioned machines with linchpin destroy. However, you may not want to remove every single target from your last provision. For example, lets say you ran the simple provision above, then ran a few others. You could use the transaction ID, labeled “ID” above, to do so.

$ linchpin -vv destroy -t 122

You may also have provisioned multiple targets at once. If you only want to destroy one of them, you can do so with the name of the target and the run ID.

$ linchpin -vv destroy -r 1 simple

Journal

Each time you provision or destroy resources with LinchPin, information about the run is stored in the Run Database, or RunDB. Data from the RunDB can be printed using linchpin journal. This allows you to keep track of which resources you have provisioned but haven’t destroyed and gather the transaction and run IDs for those resources. To list each resource by target, simply run:

$ linchpin journal

Target: simple
run_id action uhash rc
--
2 destroy bb8064 0
1 up bb8064 0

Target: beaker-openstack
run_id action uhash rc
--
2 destroy b1e364 2
1 up b1e364 2

Target: os-subnet
run_id action uhash rc
--
3 destroy c619ac 0
2 up c619ac 0
1 destroy ab9d81 0

As you can see, linchpin printed out the run data for the simple target that we provisioned and destroyed above, but also printed out information for a number of other targets which had been provisioned recently. You can provide a target as an argument to only print out the given target. You can also group by transaction id with the flag --view tx. Click here to read more about linchpin journal

Provisioning OpenStack Server with LinchPin

LinchPin can be used to provision compute instances on OpenStack. If you need to familiarize yourself with OpenStack Server, read this [https://developer.openstack.org/api-guide/compute/server_concepts.html]. Now let’s step through the process of creating a new workspace for provisioning OpenStack

Fetch

It is possible that you want to access a workspace that already exists. If that workspace exists online, linchpin fetch can be used to clone the repository. For example, the OpenShift on OpenStack example from release 1.7.2 in the linchpin repository can be cloned as follows:

$ linchpin fetch --root docs/source/examples/workspaces openshift-on-openstack --branch 1.7.2 --dest ./fetch-example https://github.com/CentOS-PaaS-SIG/linchpin

You can even choose to fetch only a certain component of the workspace. For example, if you only wish to fetch the topologies you can add --type topologies. If you were able to fetch a complete workspace, you can skip to Up

Initialization

Assuming you are creating a workspace from scratch, you can run linchpin init to initialize a workspace. The following line of code will create a linchpin.conf, dummy PinFile, and README.rst in a directory called “simple”

$ linchpin init simple

The PinFile contains a single target, called simple, which contains a topology but no layout. A group of related provisioning tasks is called a target. Each target has a topology, which can contain many resource groups, and an optional layout. We’ll explain what each of those means later on in further detail

Creating a Topology

Now that we have a PinFile, its time to add the code for an OpenStack server. Edit your PinFile so it looks like the one below.

simple:
 topology:
 topology_name: simple
 resource_groups:
 - resource_group_name: os_simple
 resource_group_type: openstack
 resource_definitions:
 - name: simple_keypair
 role: os_keypair
 - name: simple_server
 role: os_server
 flavor: m1.small
 keypair: simple_keypair
 count: 1

There are a number of other fields available for these two roles. Information about those fields as well as the other OpenStack roles can be found on the OpenStack provider page.

A resource group is a group of resources related to a single provider. In this example we have an openstack resource group that defines two different types of openstack resources. We could also define an AWS resource group below it that provisions a handful of EC2 nodes. A single resource group can contain many resource definitions. A resource definition details the requirements for a specific resource. Multiple resources can be provisioned from a single resource definition by editing the count field, but all non-unique properties of the resources will be identical.

Credentials

Finally, we need to add credentials to the resource group. OpenStack provides several ways to provide credentials. LinchPin supports some of these methods for passing credentials for use with OpenStack resources.

Environment Variables

LinchPin honors the OpenStack environment variables such as $OS_USERNAME,
$OS_PROJECT_NAME, etc.

See the OpenStack documentation cli documentation [https://docs.openstack.org/python-openstackclient/pike/cli/man/openstack.html#manpage]
for details.

Note

No credentials files are needed for this method. When LinchPin calls
the OpenStack provider, the environment variables are automatically picked
up by the OpenStack Ansible modules, and passed to OpenStack for
authentication.

Using OpenStack Credentials

OpenStack provides a simple file structure using a file called
clouds.yaml [https://docs.openstack.org/os-client-config/latest/user/configuration.html],
to provide authentication to a particular tenant. A single clouds.yaml file might contain several entries.

clouds:
 devstack:
 auth:
 auth_url: http://192.168.122.10:35357/
 project_name: demo
 username: demo
 password: 0penstack
 region_name: RegionOne
 trystack:
 auth:
 auth_url: http://auth.trystack.com:8080/
 project_name: trystack
 username: herlo-trystack-3855e889
 password: thepasswordissecrte

Using this mechanism requires that credentials data be passed into LinchPin.

An OpenStack topology can have a credentials section for each
resource_group, which requires the filename, and the profile name.

It’s worth noting that we can’t give you credentials to use, so you’ll have to provide
your own filename and profile here. By default, LinchPin searches for the filename in
{{ workspace}}/credentials but can be made to search other places by setting the
evars.default_credentials_path variable in your linchpin.conf. The credentials
path can also be overridden by using the --creds-path flag.

topology_name: topo
resource_groups:
 - resource_group_name: openstack
 resource_group_type: openstack
 resource_definitions:

 .. snip ..

 credentials:
 filename: clouds.yaml
 profile: devstack

Creating a Layout

LinchPin can use layouts to describe what an Ansible inventory might look like after provisioning. Layouts can include information such as IP addresses, zones, and FQDNs. Under the simple key, put the following data:

layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 server:
 count: 1
 host_groups:
 - frontent
 host_groups:
 all:
 vars:
 ansible_user: root
 frontend:
 vars:
 ansible_ssh_common_args: -o StrictHostKeyChecking=no

After provisioning the hosts, LinchPin will through each host type in the inventory_layout, pop count hosts off of the list, and add them to the relevant host groups. The host_groups section of the layout is used to set environment variables for each of the hosts in a given host group

Up

Once the resources have been defined, LinchPin can be run as follows:

$ linchpin --workspace . -vv up simple

The --workspace flag references the relevant workspace. By default, the workspace is
the current working directory. If the PinFile has a name (or path) other than {{workspace}}/PinFile,
the --pinfile flag can override that. Finally, -vv sets a verbosity level of 2. As
with Ansible, the verbosity can be set between 0 and 4.

If the provisioning was successful, you should see some output at the bottom that looks something like this:

ID: 122
Action: up

Target Run ID uHash Exit Code

simple 1 3a0c59 0

You can use that uhash value to get the inventory generated according to the layout we discussed above. The file will be titled inventories/${target}-${uhash} but you can change this naming schema by editing the inventory_file field in the inventory_layout section of the layout. When linchpin up is run, each target will generate its own inventory layout. The inventories folder and inventory_path can also be set in the evars section of linchpin.conf

Destroy

At some point you’ll no longer need the machines you provisioned. You can destroy the provisioned machines with linchpin destroy. However, you may not want to remove every single target from your last provision. For example, lets say you ran the simple provision above, then ran a few others. You could use the transaction ID, labeled “ID” above, to do so.

$ linchpin -vv destroy -t 122

You may also have provisioned multiple targets at once. If you only want to destroy one of them, you can do so with the name of the target and the run ID.

$ linchpin -vv destroy -r 1 simple

Journal

Each time you provision or destroy resources with LinchPin, information about the run is stored in the Run Database, or RunDB. Data from the RunDB can be printed using linchpin journal. This allows you to keep track of which resources you have provisioned but haven’t destroyed and gather the transaction and run IDs for those resources. To list each resource by target, simply run:

$ linchpin journal

Target: simple
run_id action uhash rc
--
2 destroy bb8064 0
1 up bb8064 0

Target: beaker-openstack
run_id action uhash rc
--
2 destroy b1e364 2
1 up b1e364 2

Target: os-subnet
run_id action uhash rc
--
3 destroy c619ac 0
2 up c619ac 0
1 destroy ab9d81 0

As you can see, linchpin printed out the run data for the simple target that we provisioned and destroyed above, but also printed out information for a number of other targets which had been provisioned recently. You can provide a target as an argument to only print out the given target. You can also group by transaction id with the flag --view tx. Click here to read more about linchpin journal

Linchpin API (until 1.7.5)

LinchPin can be used to provision resources by invoking linchpin python API.

Provisioning example using a Pinfile

While provisioning with a Pinfile as a dictionary we have to set various config parameters and workspaces as follows.

from linchpin import LinchpinAPI
from linchpin.context import LinchpinContext

context = LinchpinContext()
context.setup_logging()
context.load_config()
context.load_global_evars()
context.set_cfg('lp', 'workspace', '.')
context.set_evar('workspace', '.')
context.set_evar('debug_mode', True)
linchpin_api = LinchpinAPI(context)
pindict = {
 "simple": {
 "layout": {
 "inventory_layout": {
 "hosts": {
 "example-node": {
 "count": 1,
 "host_groups": [
 "example"
]
 }
 },
 "vars": {
 "hostname": "__IP__",
 "ansible_ssh_private_key_file": "~/.ssh/id_rsa"
 }
 }
 },
 "topology": {
 "topology_name": "simple",
 "resource_groups": [
 {
 "resource_group_name": "os-server-new",
 "resource_definitions": [
 {
 "count": 1,
 "name": "database",
 "image": "CentOS-7-x86_64-GenericCloud-1612",
 "keypair": "ci-factory",
 "role": "os_server",
 "fip_pool": "10.8.240.0",
 "flavor": "m1.small",
 "networks": [
 "QE-test"
]
 }
],
 "resource_group_type": "openstack",
 "credentials": {
 "filename": "clouds.yaml",
 "profile": "default"
 }
 }
]
 }
 }
}

credentials alternatives: file vs environment variables
linchpin_api.do_action(pindict, action='up')
inorder to destroy the pinfile we need to pass action parameter as destroy
linchpin_api.do_action(pindict, action='destroy')

Linchpin revised API (Preview in 1.7.6)

In linchpin new api restructure linchpin provides two classes Pinfile, Workspace to provision resources

This feature is currently in Preview state for 1.7.6 will be available from version 2.0

Examples for provisioning using linchpin api Pinfile and workspace are as follows

 import json
 import linchpin
 from linchpin.api import Pinfile
 from linchpin.api import Workspace

 # workspace requires workspace path
 wksp = Workspace(path="/tmp/tmp3BAAhC/")
 wksp.up()
 #prints the inventory generated after provisioning
 wksp.get_inventory(inv_format="json")
 wksp.destroy()

 # Provisioning with Pinfile structure

 pinfile="""
 dummy-test:
 topology:
 topology_name: "dummy_cluster" # topology name
 resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 - name: "web"
 role: "dummy_node"
 count: 3
 - name: "test"
 role: "dummy_node"
 count: 1
 layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 example-node:
 count: 3
 host_groups:
 - example
 test-node:
 count: 1
 host_groups:
 - test
 host_groups:
 all:
 vars:
 ansible_user: root
 """
 import yaml
 pinfile = yaml.load(pinfile)
 pf = Pinfile(pinfile=pinfile)
 print(pf.validate())
 #pf.up()
 #pf.destroy()

workspace with external credential path
 wsp = Workspace(path="/home/srallaba/workspace/lp_ws_backup/lp_ws/ex_hooks/testw/dummy-creds-vault")
 print(wsp.validate())
 wsp.set_creds_path("/home/srallaba/workspace/lp_ws_backup/lp_ws/ex_hooks/testw/dummy-creds-vault/credentials/")
 wsp.set_evar("vault_password","testval")
 wsp.up()
 wsp.get_inventory()
 wsp.destroy()

Note

The both examples provided are backward compatible in nature. Introduction of new API does not change functionality the existing API

Refer the API reference section here Linchpin API and Context Modules for more documentation on specific functions

Documentation

	Installation

	Running LinchPin

	General Configuration

	Commands (CLI)

	Managing Resources

	Examples for all Providers

	Advanced Topics

Installation

LinchPin can be run either as a container or as a bare-metal application

Docker Installation

The LinchPin container is built using the latest Fedora image. The image exists in the docker hub as contrainfra/linchpin and is updated with each release. The image can also be build manually.

From within the config/Dockerfiles/linchpin directory:

$ sudo buildah bud -t linchpin .

Finally, to run the linchpin container:

$ sudo buildah run linchpin -v /path/to/workspace:/workdir -- linchpin -w /wordir up
$ sudo buildah run linchpin -v /path/to/workspace:/workdir -- linchpin -w /workdir -vv destroy

Note

Setting the CREDS_PATH environment variable pointing the /workdir is recommended.
AWS credentials can also be passed as evironment variables when the container is run, named AWS_SECRET_ACCESS_KEY and AWS_ACCESS_KEY_ID

Note

Beaker uses kinit, which is installed in the container but must be run within the container after it starts
The default /etc/krb5.conf for kerberos requires privilege escalation. The linchpin Dockerfile replaces it with a version that eliminates this need

Bare Metal Installation

Currently, LinchPin can be run from any machine with Python 2.6+ (Python 3.x is currently experimental), and requires Ansible 2.7.1 or newer.

Note

Some providers have additional dependencies. Additional software requirements can be found in the Examples for all Providers documentation.

Refer to your specific operating system for directions on the best method to install Python, if it is not already installed. Many modern operating systems will have Python already installed. This is typically the case in all versions of Linux and OS X, but the version present might be older than the version needed for use with Ansible. You can check the version by typing python --version.

If the system installed version of Python is older than 2.6, many systems will provide a method to install updated versions of Python in parallel to the system version (eg. virtualenv).

Minimal Software Requirements

As LinchPin is heavily dependent on Ansible 2.9.0 or newer, this is a core requirement. Beyond installing Ansible, there are several packages that need to be installed:

* libffi-devel
* libyaml-devel
* python3-libselinux
* make
* gcc
* redhat-rpm-config
* libxml2-python
* libxslt-python

For CentOS or RHEL the following packages should be installed:

$ sudo yum install python3-pip python3-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel libselinux-python make \
gcc redhat-rpm-config git

Attention

CentOS 6 (and likely RHEL 6) require special care during installation. See Installing LinchPin on CentOS 6 for more detail.

For Fedora 30+ the following packages should be installed:

$ sudo dnf install python3-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel python3-libselinux make \
gcc redhat-rpm-config libxml2-python libxslt-python

Installing LinchPin

Note

Currently, linchpin is not packaged for any major Operating System. If you’d like to contribute your time to create a package, please contact the linchpin mailing list.

Create a virtualenv to install the package using the following sequence of commands (requires virtualenvwrapper)

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip3 install linchpin
..snip..

Note

mkvirtualenv is optional dependency you can install from here [http://virtualenvwrapper.readthedocs.io/en/latest/install.html]. An alternative, virtualenv, also exists. Please refer to the virtualenv documentation [https://virtualenv.pypa.io/en/stable/] for more details.

To deactivate the virtualenv

(linchpin) $ deactivate
$

Then reactivate the virtualenv

$ workon linchpin
(linchpin) $

If testing or docs is desired, additional steps are required

(linchpin) $ pip3 install linchpin[docs]
(linchpin) $ pip3 install linchpin[tests]

Virtual Environments and SELinux

When using a virtualenv with SELinux enabled, LinchPin may fail due to an error related to the python3-libselinux libraries. This is because the python3-libselinux binary needs to be enabled in the Virtual Environment. Because this library affects the filesystem, it isn’t provided as a standard python module via pip. The RPM must be installed, then a symlink must occur.

(linchpin) $ sudo dnf install python3-libselinux
.. snip ..
(linchpin) $ echo ${VIRTUAL_ENV}
/path/to/virtualenvs/linchpin
(linchpin) $ export VENV_LIB_PATH=lib/python3.x/site-packages
(linchpin) $ export LIBSELINUX_PATH=/usr/lib64/python3.x/site-packages # make sure to verify this location
(linchpin) $ ln -s ${LIBSELINUX_PATH}/selinux ${VIRTUAL_ENV}/${VENV_LIB_PATH}
(linchpin) $ ln -s ${LIBSELINUX_PATH}/_selinux.so ${VIRTUAL_ENV}/${VENV_LIB_PATH}

Note

A script is provided to do this work at :code1.5:`scripts/install_selinux_venv.sh`

Installing on Fedora 30+

Install RPM pre-reqs

$ sudo dnf -y install python3-virtualenv libffi-devel openssl-devel libyaml-devel python3-libselinux make gcc redhat-rpm-config libxml2-python

Create a working-directory

$ mkdir mywork
$ cd mywork

Create linchpin directory, make a virtual environment, activate the virtual environment

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip3 install linchpin

Make a workspace, and initialize it to prove that linchpin itself works

(linchpin) $ mkdir workspace
(linchpin) $ cd workspace
(linchpin) $ linchpin init
PinFile and file structure created at /home/user/workspace

Note

The default workspace is $PWD, but can be set using the $WORKSPACE variable.

Installing on RHEL 7.4

Tested on RHEL 7.4 Server VM which was kickstarted and pre-installed with the following YUM package-groups and RPMs:

* @core
* @base
* vim-enhanced
* bash-completion
* scl-utils
* wget

For RHEL 7, it is assumed that you have access to normal RHEL7 YUM repos via RHSM or by pointing at your own http YUM repos, specifically the following repos or their equivalents:

* rhel-7-server-rpms
* rhel-7-server-optional-rpms

Install pre-req RPMs via YUM:

$ sudo yum install -y libffi-devel openssl-devel libyaml-devel gmp-devel python3-libselinux make gcc redhat-rpm-config libxml2-devel libxslt-devel libxslt-python libxslt-python

Create a working-directory

$ mkdir mywork
$ cd mywork

Create linchpin directory, make a virtual environment, activate the virtual environment

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip3 install linchpin

Inside the virtualenv, upgrade pip and setuptools because the EPEL versions are too old.

(linchpin) $ pip3 install -U setuptools

Install linchpin

(linchpin) $ pip3 install linchpin

Make a workspace, and initialize it to prove that linchpin itself works

(linchpin) $ mkdir workspace
(linchpin) $ cd workspace
(linchpin) $ linchpin init
PinFile and file structure created at /home/user/workspace

Source Installation

As an alternative, LinchPin can be installed via github. This may be done in order to fix a bug, or contribute to the project.

$ git clone git://github.com/CentOS-PaaS-SIG/linchpin
..snip..
$ cd linchpin
$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip3 install file://$PWD/linchpin

linchpin setup : Automatic Dependency installation:

From version 1.6.5 linchpin includes linchpin setup commandline option to automate installations of linchpin dependencies.
linchpin setup uses built in ansible-playbooks to carryout the installations.

Install all the dependencies:

$ linchpin setup

To install only a subset of dependencies, pass as arguments list:

$ linchpin setup beaker docs

It also supports ask-sudo-pass parameter when installing dnf related dependencies:

$ linchpin setup libvirt --ask-sudo-pass

Running LinchPin

This guide will walk you through the basics of using LinchPin. LinchPin is a command-line utility, a Python API, and Ansible playbooks. As this guide is intentionally brief to get you started, a more complete version can be found in the documentation links found to the left in the index.

Topics

	Running LinchPin

	Running the linchpin command

	Getting Help

	Basic Usage

	Options and Arguments

	Combining Options

	Common Usage

	Verbose Output

	Specify an Alternate PinFile

	Specify an Alternate Workspace

	Provide Credentials

	Workspaces

	Initialization (init)

	Resources

	Topology

	Inventory Layout

	PinFile

	Provisioning (up)

	Teardown (destroy)

	Authentication

	Credentials

	Credentials File

	Using Credentials

	Credentials Location

Running the linchpin command

The linchpin CLI is used to perform tasks related to managing resources. For detail about a specific command, see Commands (CLI).

Getting Help

Getting help from the command line is very simple. Running either linchpin
or linchpin --help will yield the command line help page.

$ linchpin --help
Usage: linchpin [OPTIONS] COMMAND [ARGS]...

 linchpin: hybrid cloud orchestration

Options:
 -c, --config PATH Path to config file
 -p, --pinfile PINFILE Use a name for the PinFile different from
 the configuration.
 -d, --template-data TEMPLATE_DATA
 Template data passed to PinFile template
 -o, --output-pinfile OUTPUT_PINFILE
 Write out PinFile to provided location
 -w, --workspace PATH Use the specified workspace. Also works if
 the familiar Jenkins WORKSPACE environment
 variable is set
 -v, --verbose Enable verbose output
 --version Prints the version and exits
 --creds-path PATH Use the specified credentials path. Also
 works if CREDS_PATH environment variable is
 set
 -h, --help Show this message and exit.

Commands:
 init Initializes a linchpin project.
 up Provisions nodes from the given target(s) in...
 destroy Destroys nodes from the given target(s) in...
 fetch Fetches a specified linchpin workspace or...
 journal Display information stored in Run Database...

For subcommands, like linchpin up, passing the --help or -h option produces help related to the provided subcommand.

$ linchpin up -h
Usage: linchpin up [OPTIONS] TARGETS

 Provisions nodes from the given target(s) in the given PinFile.

 targets: Provision ONLY the listed target(s). If omitted, ALL targets
 in the appropriate PinFile will be provisioned.

 run-id: Use the data from the provided run_id value

Options:
 -r, --run-id run_id Idempotently provision using `run-id` data
 -h, --help Show this message and exit.

As can easily be seen, linchpin up has additional arguments and options.

Basic Usage

The most basic usage of linchpin might be to perform an up action. This simple command assumes a PinFile in the workspace (current directory by default), with one target dummy.

$ linchpin up
Action 'up' on Target 'dummy' is complete

Target Run ID uHash Exit Code

dummy 75 79b9 0

Upon completion, the systems defined in the dummy target will be provisioned. An equally basic usage of linchpin is the destroy action. This command is peformed using the same PinFile and target.

$ linchpin destroy
Action 'destroy' on Target 'dummy' is complete

Target Run ID uHash Exit Code

dummy 76 79b9 0

Upon completion, the systems which were provisioned, are destroyed (or torn down).

Preview Feature:

linchpin up and destroy includes –use-shell parameter which makes linchpin run as a subprocess rather than ansible api call
usefull when we would like to overwrite environment varibles

$ linchpin -vvvv up --use-shell --env-vars TESTENV testenv value

Options and Arguments

The most common argument available in linchpin is the TARGET. Generally, the PinFile will have many targets available, but only one or two will be requested.

$ linchpin up dummy-new libvirt-new
Action 'up' on Target 'dummy' is complete
Action 'up' on Target 'libvirt' is complete

Target Run ID uHash Exit Code

dummy 77 73b1 0
libvirt 39 dc2c 0

In some cases, you may wish to use a different PinFile.

$ linchpin -p PinFile.json up
Action 'up' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 29 c70a 0

As you can see, this PinFile had a target called dummy-new, and it was the only target listed.

Other common options include:

	--verbose (-v) to get more output

	--config (-c) to specify an alternate configuration file

	--workspace (-w) to specify an alternate workspace

Combining Options

The linchpin command also allows combinining of general options with subcommand options. A good example of these might be to use the verbose (-v) option. This is very helpful in both the up and destroy subcommands.

$ linchpin -v up dummy-new -r 72
using data from run_id: 72
rundb_id: 73
uhash: a48d
calling: preup
hook preup initiated

PLAY [schema check and Pre Provisioning Activities on topology_file] ********

TASK [Gathering Facts] **
ok: [localhost]

TASK [common : use linchpin_config if provided] *****************************

What can be immediately observed, is that the -v option provides more verbose output of a particular task. This can be useful for troubleshooiting or giving more detail about a specitic task. The -v option is placed before the subcommand. The -r option, since it applies directly to the up subcommand, it is placed afterward. Investigating the linchpin -help and linchpin up --help can help differentiate if there’s confusion.

Common Usage

Verbose Output

$ linchpin -v up dummy-new

Specify an Alternate PinFile

$ linchpin -vp Pinfile.alt up

Specify an Alternate Workspace

$ export WORKSPACE=/tmp/my_workspace
$ linchpin up libvirt

or

$ linchpin -vw /path/to/workspace destroy openshift

Provide Credentials

$ export CREDS_PATH=/tmp/my_workspace
$ linchpin -v up libvirt

or

$ linchpin -v --creds-path /credentials/path up openstack

Note

The value provided to the --creds-path option is a directory,
NOT a file. This is generally due to the topology containing the
filename where the credentials are stored.

Workspaces

Initialization (init)

Running linchpin init will generate the workspace directory structure, along with an example PinFile, topology, and layout files. Performing the following tasks will generate a simple dummy folder with All in one PinFile which includes topology, and layout structure.

$ pwd
/tmp/workspace
$ linchpin init
Created destination workspace <path>
$ tree

├── dummy
│ ├── PinFile
│ ├── PinFile.json
│ └── README.rst
└── linchpin.log

Resources

With LinchPin, resources are king. Defining, managing, and generating outputs are all done using a declarative syntax. Resources are managed via the PinFile. The PinFile can hold two additional files, the topology, and layout. Linchpin also supports Linchpin Hooks.

Topology

The topology is declarative, written in YAML or JSON (v1.5+), and defines how the provisioned systems should look after executing the linchpin up command. A simple dummy topology is shown here.

topology_name: "dummy_cluster" # topology name
resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 - name: "web"
 role: "dummy_node"
 count: 1

This topology describes a single dummy system that will be provisioned when linchpin up is executed. Once provisioned, the resources outputs are stored for reference and later lookup. Additional topology examples can be found in :dirs1.5:`the source code <workspace/topologies>`.

Inventory Layout

An inventory_layout (or layout) is written in YAML or JSON (v1.5+), and defines how the provisioned resources should look in an Ansible static inventory file. The inventory is generated from the resources provisioned by the topology and the layout data. A layout is shown here.

inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 example-node:
 count: 1
 host_groups:
 - example

The above YAML allows for interpolation of the ip address, or hostname as a component of a generated inventory. A host group called example will be added to the Ansible static inventory. The all group always exists, and includes all provisioned hosts.

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

Note

A keen observer might notice the filename and hostname are appended with -0446. This value is called the uhash or unique-ish hash. Most providers allow for unique identifiers to be assigned automatically to each hostname as well as the inventory name. This provides a flexible way to repeat the process, but manage multiple resource sets at the same time.

Advanced layout examples can be found by reading ra_inventory_layouts.

Note

Additional layout examples can be found in :dirs1.5:`the source code <workspace/layouts>`.

PinFile

A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a resource for provisioning. An example Pinfile is shown.

Example 1
dummy_cluster:
 topology: dummy-topology.yml
 layout: dummy-layout.yml

Example 2
dummy-topo:
 topology:
 topology_name: "dummy_cluster" # topology name
 resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 - name: "{{ distro | default('') }}web"
 role: "dummy_node"
 count: 3
 - name: "{{ distro | default('') }}test"
 role: "dummy_node"
 count: 1
 layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 example-node:
 count: 3
 host_groups:
 - example
 test-node:
 count: 1
 host_groups:
 - test

The PinFile collects the given topology and layout into one place. Many targets can be referenced in a single PinFile.

To use a PinFile with an Ansible Galaxy role, simply provide the role name as the resource_group_type. An example is shown below.

dummy-new:
 topology:
 topology_name: "dummy_cluster" # topology name
 resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "14rcole.ansible_role_lp_dummy"
 resource_definitions:
 - name: "{{ distro | default('') }}web"
 role: "dummy_node"
 count: 3
 - name: "{{ distro | default('') }}test"
 role: "dummy_node"
 count: 1

More detail about the PinFile can be found in the PinFiles document.

Additional PinFile examples can be found in :dirs1.5:`the source code <workspace>`

Provisioning (up)

Once a PinFile, topology, and optional layout are in place, provisioning can happen. Performing the command linchpin up should provision the resources and inventory files based upon the topology_name value. In this case, is dummy_cluster.

$ linchpin up
target: dummy_cluster, action: up
Action 'up' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 70 0446 0

As you can see, the generated inventory file has the right data. This can be used in many ways, which will be covered elsewhere in the documentation.

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

To verify resources with the dummy cluster, check /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-0446-0.example.net
test-0446-0.example.net

Teardown (destroy)

As expected, LinchPin can also perform teardown of resources. A teardown action generally expects that resources have been provisioned. However, because Ansible is idempotent, linchpin destroy will only check to make sure the resources are up. Only if the resources are already up will the teardown happen.

The command linchpin destroy will look up the resources and/or topology files (depending on the provider) to determine the proper teardown procedure. The dummy Ansible role does not use the resources, only the topology during teardown.

$ linchpin destroy
target: dummy_cluster, action: destroy
Action 'destroy' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 71 0446 0

Verify the /tmp/dummy.hosts file to ensure the records have been removed.

$ cat /tmp/dummy.hosts
-- EMPTY FILE --

Note

The teardown functionality is slightly more limited around ephemeral
resources, like networking, storage, etc. It is possible that a network
resource could be used with multiple cloud instances. In this way,
performing a linchpin destroy does not teardown certain resources. This
is dependent on each providers implementation.

Authentication

Some Examples for all Providers require authentication to acquire
managing_resources. LinchPin provides tools for these providers to
authenticate. The tools are called credentials.

Credentials

Credentials come in many forms. LinchPin wants to let the user control how the
credentials are formatted. In this way, LinchPin supports the standard
formatting and options for a provider. The only constraints that exist are how
to tell LinchPin which credentials to use, and where they credentials data
resides. In every case, LinchPin tries to use the data similarly to the way
the provider might.

One method to provide AWS credentials that can be loaded by LinchPin is to use
the INI format that the AWS CLI tool [https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html]
uses.

Credentials File

An example credentials file may look like this for aws.

$ cat aws.key
[default]
aws_access_key_id=ARYA4IS3THE3NO7FACEB
aws_secret_access_key=0Hy3x899u93G3xXRkeZK444MITtfl668Bobbygls

[herlo_aws1_herlo]
aws_access_key_id=JON6SNOW8HAS7A3WOLF8
aws_secret_access_key=Te4cUl24FtBELL4blowSx9odd0eFp2Aq30+7tHx9

See also

Examples for all Providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first
is which credentials to use. The second is where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are
described by specifying the file, then the profile. As shown above, the
filename is ‘aws.key’. The user could pick either profile in that file.

topology_name: ec2-new
resource_groups:
 - resource_group_name: "aws"
 resource_group_type: "aws"
 resource_definitions:
 - name: demo-day
 flavor: m1.small
 role: aws_ec2
 region: us-east-1
 image: ami-984189e2
 count: 1
 credentials:
 filename: aws.key
 profile: default

The important part in the above topology is the credentials section. Adding
credentials like this will look up, and use the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is
~/.config/linchpin.

Hint

The default_credentials_path value uses the interpolated
:dirs1.5:`default_config_path <workspace/linchpin.conf#L22>` value, and
can be overridden in the :docs1.5:`linchpin.conf`.

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up aws-ec2-new

Note

The aws.key file could be placed in the
default_credentials_path. In that case passing
--creds-path would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up aws-ec2-new

See also

	Commands (CLI)
	Linchpin Command-Line Interface

	Common Workflows
	Common LinchPin Workflows

	Managing Resources
	Managing Resources

	Examples for all Providers
	Providers in Detail

General Configuration

Managing LinchPin requires a few configuration files. Most configurations are
stored in the :code1.5:`linchpin configuration <linchpin/linchpin.constants>` file.

Note

in versions before 1.5.1, the file was called linchpin.conf. This
changed in 1.5.1 due to backward compatibility requirements, and the need
to load configuration defaults. The linchpin.conf continues to work as
expected.

The settings in this file are loaded automatically as defaults.

However, it’s possible to override any setting in linchpin. For the
command line shell, three different locations are checked for linchpin.conf
files. Files are checked in the following order:

	/etc/linchpin.conf

	~/.config/linchpin/linchpin.conf

	/path/to/workspace/linchpin.conf

The LinchPin configuration parser supports overriding and extending
configurations. If linchpin finds the same section and setting in more than
one file, the header that was parsed more recently will provide the
configuration. In this way user can override default configurations. Commonly,
this is done by placing a linchpin.conf in the root of the workspace.

Adding/Overriding a Section

New in version 1.2.0

Adding a section to the configuration is simple. The best approach is to
create a linchpin.conf in the appropriate location from the locations above.

Once created, add a section. The section can be a new section, or it can
overwrite an existing section.

[lp]
move the rundb_connection to a global scope
rundb_conn = %(default_config_path)s/rundb/rundb-::mac::.json

module_folder = library
rundb_conn = ~/.config/linchpin/rundb-::mac::.json

rundb_type = TinyRunDB
rundb_conn_type = file
rundb_schema = {"action": "",
 "inputs": [],
 "outputs": [],
 "start": "",
 "end": "",
 "rc": 0,
 "uhash": ""}
rundb_hash = sha256

dateformat = %%m/%%d/%%Y %%I:%%M:%%S %%p
default_pinfile = PinFile

Warning

For version 1.5.0 and earlier, if overwriting a section, all
entries from the entire section must be updated.

Overriding a configuration item

New in version 1.5.1

Each item within a section can be a new setting,
or override a default setting, as shown.

[lp]
move the rundb_connection to a global scope
rundb_conn = ~/.config/linchpin/rundb-::mac::.json

As can be plainly seen, the configuration has been updated to use a different
path to the rundb_conn. This section now uses a user-based RunDB, which
can be useful in some scenarios.

Useful Configuration Options

These are some configuration options that may be useful to adjust for your
needs. Each configuration option listed here is in a format of
section.option.

Note

For clarity, this would appear in a configuration file where the
section is in brackets (eg. [section]) and the option would have a
option = value set within the section.

	lp.external_providers_path
	New in version 1.5.0

Default value: %(default_config_path)s/linchpin-x

Providers playbooks can be created outside of the core of linchpin,
if desired. When using these external providers, linchpin will use
the external_providers_path to lookup the playbooks and attempt to
run them.

See Examples for all Providers for more information.

	lp.rundb_conn
	New in version 1.2.0

	Default value:
	
	v1.2.0: /home/user/.config/linchpin/rundb-<macaddress>.json

	v1.2.2+: /path/to/workspace/.rundb/rundb.json

The RunDB is a single json file, which records each transaction involving
resources. A run_id and uHash are assigned, along with
other useful information. The lp.rundb_conn describes the location to
store the RunDB so data can be retrieved during execution.

	evars._async
	Updated in version 1.2.0

Default value: False

Previous key name: evars.async

Some providers (eg. openstack, aws, ovirt) support asynchronous
provisioning. This means that a topology containing many resources
would provision or destroy all at once. LinchPin then waits for responses
from these asynchronous tasks, and returns the success or failure. If the
amount of resources is large, asynchronous tasks reduce the wait time
immensely.

Reason for change: Avoiding conflict with existing Ansible variable.

Starting in Ansible 2.4.x, the async variable could not be set internally.
The _async value is now passed in and sets the Ansible async variable
to its value.

	evars.default_credentials_path
	Default value: %(default_config_path)s

Storing credentials for multiple providers can be useful. It also may
be useful to change the default here to point to a given location.

Note

The --creds-path option, or $CREDS_PATH environment
variable overrides this option

	evars.inventory_file
	Default value: None

If the unique-hash feature is turned on, the default inventory_file
value is built up by combining the workspace path,
inventories_folder topology_name, the uhash,
and the extensions.inventory configuration value. The resulting file
might look like this:

/path/to/workspace/inventories/dummy_cluster-049e.inventory

It may be desired to store the inventory without the uhash, or
define a completely different structure altogether.

	ansible.console
	Default value: False

This configuration option controls whether the output from the Ansible
console is printed. In the linchpin CLI tool, it’s the equivalent of
the -v (--verbose) option.

Commands (CLI)

This document covers the linchpin Command Line Interface (CLI) in detail. Each page contains a description and explanation for each component. For an overview, see Running the linchpin command.

	linchpin init

	linchpin up

	linchpin destroy

	linchpin journal

	linchpin fetch

	linchpin validate

	Validate Command

	linchpin setup

	linchpin ssh

linchpin init

Running linchpin init will generate the workspace directory structure, along with an example PinFile, topology, and layout files. Performing the following tasks will generate a simple dummy folder with All in one PinFile which includes topology, and layout structure.

$ pwd
/tmp/workspace
$ linchpin init
Created destination workspace <path>
$ tree

├── dummy
│ ├── PinFile
│ ├── PinFile.json
│ └── README.rst
└── linchpin.log

linchpin up

Once a PinFile, topology, and optional layout are in place, provisioning can happen. Performing the command linchpin up should provision the resources and inventory files based upon the topology_name value. In this case, is dummy_cluster.

$ linchpin up
target: dummy_cluster, action: up
Action 'up' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy-new 83 a18e9a 0
dummy-topo 70 044695 0

As you can see, the generated inventory file has the right data. This can be used in many ways, which will be covered elsewhere in the documentation.

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

To verify resources with the dummy cluster, check /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-0446-0.example.net
test-0446-0.example.net

A subset of the hosts in a PinFile can be provisioned by listing each of them at the end of the command

$ linchin -vv up dummy-new

Target Run ID uHash Exit Code

dummy-new 83 a18e9a 0

Preview Feature:

linchpin up and destroy includes –use-shell parameter which makes linchpin run as a subprocess rather than ansible api call
usefull when we would like to overwrite environment varibles

$ linchpin -vvvv up dummy-new --use-shell --env-vars TESTENV testenv value

linchpin destroy

As expected, LinchPin can also perform teardown of resources. A teardown action generally expects that resources have been provisioned. However, because Ansible is idempotent, linchpin destroy will only check to make sure the resources are up. Only if the resources are already up will the teardown happen.

The command linchpin destroy will look up the resources and/or topology files (depending on the provider) to determine the proper teardown procedure. The dummy Ansible role does not use the resources, only the topology during teardown.

$ linchpin destroy
target: dummy_cluster, action: destroy
Action 'destroy' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 71 0446 0

Verify the /tmp/dummy.hosts file to ensure the records have been removed.

$ cat /tmp/dummy.hosts
-- EMPTY FILE --

Note

The teardown functionality is slightly more limited around ephemeral
resources, like networking, storage, etc. It is possible that a network
resource could be used with multiple cloud instances. In this way,
performing a linchpin destroy does not teardown certain resources. This
is dependent on each providers implementation.

See also

Examples for all Providers

linchpin journal

Upon completion of any provision (up) or teardown (destroy) task, there’s a record that is created and stored in the RunDB. The linchpin journal command displays data about these tasks.

$ linchpin journal --help
Usage: linchpin journal [OPTIONS] TARGETS

 Display information stored in Run Database

 view: How the journal is displayed

 'target': show results of transactions on listed targets
 (or all if omitted)

 'tx': show results of each transaction, with results
 of associated targets used

 (Default: target)

 count: Number of records to show per target

 targets: Display data for the listed target(s). If omitted, the latest
 records for any/all targets in the RunDB will be displayed.

 fields: Comma separated list of fields to show in the display.
 (Default: action, uhash, rc)

 (available fields are: uhash, rc, start, end, action)

Options:
 --view VIEW Type of view display (default: target)
 -c, --count COUNT (up to) number of records to return (default: 3)
 -f, --fields FIELDS List the fields to display
 -h, --help Show this message and exit.

There are two specific ways to view the data using the journal, by ‘target’ and ‘transactions (tx)’.

Target

The default view, ‘target’, is displayed using the target. The data displayed to the screen shows the last three (3) tasks per target, along with some useful information.

$ linchpin journal --view=target dummy-new

Target: dummy-new
run_id action uhash rc
--
5 up 0658 0
4 destroy cf22 0
3 up cf22 0

Note

The ‘target’ view is the default, making the –view optional.

The target view can show more data as well. Fields (-f, --fields) and
count (-c, --count) are useful options.

$ linchpin journal dummy-new -f action,uhash,end -c 5

Target: dummy-new
run_id action uhash end
--
6 up cd00 12/15/2017 05:12:52 PM
5 up 0658 12/15/2017 05:10:52 PM
4 destroy cf22 12/15/2017 05:10:29 PM
3 up cf22 12/15/2017 05:10:17 PM
2 destroy 6d82 12/15/2017 05:10:06 PM
1 up 6d82 12/15/2017 05:09:52 PM

It is simple to see that the output now has five (5) records, each containing the run_id, action, uhash, and end date.

The data here can be used to perform idempotent (repetitive) tasks, like running the up action on run_id: 5 again.

$ linchpin up dummy-new -r 6
Action 'up' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 7 cd00 0

What might not be immediately obvious, is that the uhash on Run ID: 7 is identical to the run_id: 6 shown in the previous linchpin journal output. Essentially, the same task was run again.

Note

If LinchPin is configured with the unique-hash feature, and the provider supports naming, resources can have unique names. These features are turned off by default.

The destroy action will automatically look up the last task with an up action and destroy it. If other resources are needed to be destroyed, a run_id should be passed to the task.

$ linchpin destroy dummy-new -r 5
Action 'destroy' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 8 0658 0

Transactions

The transaction view, provides data based upon each transaction.

$ linchpin journal --view tx --count 1

ID: 130 Action: up

Target Run ID uHash Exit Code

dummy-new 279 920c 0
libvirt 121 ef96 0

===

In the future, the transaction view will also provide output for these items.

linchpin fetch

The linchpin fetch command provides a simple way to access a resource from
a remote location. One could simply perform a git clone, or use wget to
download a workspace. However, linchpin fetch makes this process
simpler, and includes some tooling to make the workflow smooth.

$ linchpin fetch --help
Usage: linchpin fetch [OPTIONS] REMOTE

 Fetches a specified linchpin workspace or component from a remote location

Options:
 -t, --type TYPE Which component of a workspace to fetch.
 (Default: workspace)
 -r, --root ROOT Use this to specify the location of the
 workspace within the root url. If root is not
 set, the root of the given remote will be used.
 --dest DEST Workspaces destination, the fetched workspace
 will be relative to this location. (Overrides
 -w/--workspace)
 --branch REF Specify the git branch. Used only with git
 protocol (eg. master).
 --git Remote is a Git repository (default)
 --web Remote is a web directory
 --nocache Do not check the cached time, just copy the
 data to the destination
 -h, --help Show this message and exit.

linchpin validate

Validate Command

The purpose of the validate command is to determine whether topologies and layouts are syntactically valid. If not, it will provide a list of errors that occured during validation

The command linchpin validate looks at the topology and layout files for each target in a given PinFile. If the topology is not valid under the current schema, it will attempt to convert the topology to an older schema and try again. If the topology is still invalid, the command will report the topology and a list of errors found.

Invalid Topologies

Here is a simple PinFile and topology file. The topology file has some errors and will not validate.

libvirt-new:
 topology: libvirt-new.yml
 layout: libvirt.yml

libvirt:
 topology: libvirt.yml
 layout: libvirt.yml

libvirt-network:
 topology: libvirt-network.yml

topology_name: libvirt-new
resource_groups:
 - resource_group_name: libvirt-new
 resource_group_type: libvirt
 resource_definitions:
 - role: libvirt_node
 uri: qemu:///system
 count: "1"
 image_src: http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz
 memory: 2048
 vcpus: 1
 arch: x86_64
 ssh_key: libvirt
 networks:
 - name: default
 additional_storage: 10G
 cloud_config:
 users:
 - name: herlo
 gecos: Clint Savage
 groups: wheel
 sudo: ALL=(ALL) NOPASSWD:ALL
 ssh-import-id: gh:herlo
 lock_passwd: true

$ linchpin validate
topology for target 'libvirt-network' is valid

Topology for target 'libvirt-new' does not validate
topology: 'OrderedDict([('topology_name', 'libvirt-new'), ('resource_groups', [OrderedDict([('resource_group_name', 'libvirt-new'), ('resource_group_type', 'libvirt'), ('resource_definitions', [OrderedDict([('role', 'libvirt_node'), ('uri', 'qemu:///system'), ('image_src', 'http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz'), ('memory', 2048), ('vcpus', '1'), ('arch', 'x86_64'), ('ssh_key', 'libvirt'), ('networks', [OrderedDict([('name', 'default'), ('hello', 'world')])]), ('additional_storage', '10G'), ('cloud_config', OrderedDict([('users', [OrderedDict([('name', 'herlo'), ('gecos', 'Clint Savage'), ('groups', 'wheel'), ('sudo', 'ALL=(ALL) NOPASSWD:ALL'), ('ssh-import-id', 'gh:herlo'), ('lock_passwd', True)])])])), ('count', 1)])])])])])'
errors:
 res_defs[0][count]: value for field 'count' must be of type 'integer'
 res_defs[0][networks][0][additional_storage]: field 'additional_storage' could not be recognized within the schema provided
 res_defs[0][name]: field 'name' is required

topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

The linchpin validate command can also provide a list of errors against the old schema with the –old-schema flag

$ linchpin validate --old-schema

Topology for target 'libvirt-new' does not validate
topology: 'OrderedDict([('topology_name', 'libvirt-new'), ('resource_groups', [OrderedDict([('resource_group_name', 'libvirt-new'), ('resource_group_type', 'libvirt'), ('resource_definitions', [OrderedDict([('role', 'libvirt_node'), ('uri', 'qemu:///system'), ('image_src', 'http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz'), ('memory', 2048), ('vcpus', '1'), ('arch', 'x86_64'), ('ssh_key', 'libvirt'), ('networks', [OrderedDict([('name', 'default'), ('hello', 'world')])]), ('additional_storage', '10G'), ('cloud_config', OrderedDict([('users', [OrderedDict([('name', 'herlo'), ('gecos', 'Clint Savage'), ('groups', 'wheel'), ('sudo', 'ALL=(ALL) NOPASSWD:ALL'), ('ssh-import-id', 'gh:herlo'), ('lock_passwd', True)])])])), ('count', 1)])])])])])'
errors:
 res_defs[0][networks][0][additional_storage]: field 'additional_storage' could not be recognized within the schema provided
 res_defs[0][name]: field 'name' is required

topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

As you can see, validation under both schemas result in an error stating that the field additional_storage could not be recognized. In this case, there is simply an indentation error. additional_storage is a recognized field within resource_definitions but not within the networks sub-schema. Other times this unrecognized field may be a spelling error. Both fields also flag the missing “name” field, which is required. Both of these errors must be fixed in order for the topology file to validate. Because making count a string only results in an error when validating against the old schema, this field does not have to be changed in order for the topology file to pass validation. However, it is best to change it anyway and keep your topology as up-to-date as possible.

Valid Topologies

The topology below has been fixed so that it will validate under the current schema.

topology_name: libvirt-new
resource_groups:
 - resource_group_name: libvirt-new
 resource_group_type: libvirt
 resource_definitions:
 - role: libvirt_node
 name: centos71
 uri: qemu:///system
 count: 1
 image_src: http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz
 memory: 2048
 vcpus: 1
 arch: x86_64
 ssh_key: libvirt
 networks:
 - name: default
 additional_storage: 10G
 cloud_config:
 users:
 - name: herlo
 gecos: Clint Savage
 groups: wheel
 sudo: ALL=(ALL) NOPASSWD:ALL
 ssh-import-id: gh:herlo
 lock_passwd: true

If linchpin validate is run on a PinFile containing the topology above, this will be the output:

$ linchpin validate
topology for target 'libvirt-new' is valid
topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

linchpin setup

Some providers require additional dependencies installed on the system running linchpin. Use linchpin setup to setup the given provider(s) properly.

If a list of providers is ommitted, then it will install dependencies for all providers that need so.

In case you execute linchpin setup with a user not allowed to install packages, then pass the –ask-sudo-pass option to prompt for the sudo password.

linchpin ssh

The linchpin ssh command provides a simple way to connect to provisioned
systems. Instead of looking for the system in the inventory file and writing
an ssh command, it is easy as writing linchpin ssh, hitting <TAB><TAB>
and selecting the system. The double tab works with linchpin auto-complete
that can be enabled by running: eval "$(_LINCHPIN_COMPLETE=source linchpin)"

The SSH command will look for the latest inventory generated by Linchpin for
connection information.

$ linchpin ssh --help
Usage: linchpin ssh [OPTIONS] TARGET

Options:
 -h, --help Show this message and exit.

Managing Resources

Resources in LinchPin generally consist of Virtual Machines, Containers, Networks, Security Groups, Instances, and much more. Detailed below are examples of topologies, layouts, and PinFiles used to manage resources.

PinFiles

These PinFiles represent many combinations of complexity and providers.

PinFiles are processed top to bottom.

YAML

PinFiles written using YAML format:

	:docs1.5:`PinFile.dummy.yml <workspace/PinFile.dummy.yml>`

	:docs1.5:`PinFile.openstack.yml <workspace/PinFile.openstack.yml>`

	:docs1.5:`PinFile.complex.yml <workspace/PinFile.complex.yml>`

The combined format is only available in v1.5.0+

	:docs1.5:`PinFile.combined.yml <workspace/PinFile.combined.yml>`

JSON

New in version 1.5.0

PinFiles written using JSON format.

	:docs1.5:`PinFile.dummy.json <workspace/PinFile.dummy.json>`

	:docs1.5:`PinFile.aws.json <workspace/PinFile.aws.json>`

	:docs1.5:`PinFile.duffy.json <workspace/PinFile.duffy.json>`

	:docs1.5:`PinFile.combined.json <workspace/PinFile.combined.json>`

	:docs1.5:`PinFile.complex.json <workspace/PinFile.complex.json>`

Jinja2

New in version 1.5.0

These PinFiles are examples of what can be done with templating using Jinja2.

Beaker Template

This template would be processed with a dictionary containing a key named arches.

	:docs1.5:`PinFile.beaker.template <workspace/PinFile.beaker.template>`

$ linchpin -p PinFile.beaker.template \
 --template-data '{ "arches": ["x86_64", "ppc64le", "s390x"]}' up

Libvirt Template and Data

This template and data can be processed together.

	:docs1.5:`PinFile.libvirt-mi.template <workspace/PinFile.libvirt-mi.template>`

	:docs1.5:`Data.libvirt-mi.yml <workspace/Data.libvirt-mi.yml>`

$ linchpin -vp PinFile.libvirt-mi.template \
 --template-data Data.libvirt-mi.yml up

Scripts

New in version 1.5.0

Scripts that generate valid JSON output to STDOUT can be processed and used.

	:docs1.5:`generate_dummy.sh <workspace/scripts/generate_dummy.sh>`

$ linchpin -vp ./scripts/generate_dummy.sh up

Output PinFile

New in version 1.5.0

An output file can be created on an up/destroy action. Simply pass
the --output-pinfile option with a path to a writable file location.

$ linchpin --output-pinfile /tmp/Pinfile.out -vp ./scripts/generate_dummy.sh up
..snip..
$ cat /tmp/Pinfile.out
{
 "dummy": {
 "layout": {
 "inventory_layout": {
 "hosts": {
 "example-node": {
 "count": 3,
 "host_groups": [
 "example"
]
 }
 },
 "vars": {
 "hostname": "__IP__"
 }
 }
 },
 "topology": {
 "topology_name": "dummy_cluster",
 "resource_groups": [
 {
 "resource_group_name": "dummy",
 "resource_definitions": [
 {
 "count": 3,
 "type": "dummy_node",
 "name": "web"
 },
 {
 "count": 1,
 "type": "dummy_node",
 "name": "test"
 }
],
 "resource_group_type": "dummy"
 }
]
 }
 }
}

Topologies

These topologies represent many combinations of complexity and providers.
Topologies process resource_definitions top to bottom according to the file.

Topologies have evolved a little and have a slightly different format between
versions. However, older versions still work on v1.5.0+ (until otherwise noted).

The difference is quite minor, except in two providers, beaker and openshift.

Topology Format Pre v1.5.0

topology_name: "dummy_cluster" # topology name
resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 - name: "web"
 type: "dummy_node" <-- this is called 'type`
 count: 1

v1.5.0+ Topology Format

topology_name: "dummy_cluster" # topology name
resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 - name: "web"
 role: "dummy_node" <-- this is called 'role`
 count: 1

The subtle difference is in the resource_definitions section. In the pre-v1.5.0 topology,
the key was type, in v1.5.0+, the key is role.

Note

Pay attention to the callout in the code blocks above.

For details about the differences in beaker and openshift,
see Topology Incompatibilities.

YAML

New in version 1.5.0

Topologies written using YAML format:

	:docs1.5:`os-server-new.yml <workspace/topologies/os-server-new.yml>`

	:docs1.5:`libvirt-new.yml <workspace/topologies/libvirt-new.yml>`

	:docs1.5:`bkr-new.yml <workspace/topologies/bkr-new.yml>`

Older topologies, supported in v1.5.0+

	:docs1.5:`os-server.yml <workspace/topologies/os-server.yml>`

	:docs1.5:`libvirt.yml <workspace/topologies/libvirt.yml>`

	:docs1.5:`bkr.yml <workspace/topologies/bkr.yml>`

JSON

New in version 1.5.0

Topologies can be written using JSON format.

	:docs1.5:`dummy.json <workspace/topologies/dummy.json>`

Jinja2

New in version 1.5.0

Topologies can be processed as templates using Jinja2.

Jenkins-Slave Template

This topology template would be processed with a dictionary containing one key named arch.

	:docs1.5:`jenkins-slave.j2 <workspace/topologies/jenkins-slave.j2>`

The PinFile.jenkins.yml contains the reference to the jenkins-slave topology.

jenkins-slave:
 topology: jenkins-slave.yml
 layout: jenkins-slave.yml

See also

:docs1.5:`Pinfile.jenkins.j2 <workspace/PinFile.jenkins.j2>`

$ linchpin -p PinFile.jenkins --template-data '{ "arch": "x86_64" }' up

Layouts

Inventory Layouts (or just layout) describe what an Ansible
inventory might look like after provisioning. A layout is needed
because information about the resources provisioned are unknown in advance.

Layouts, like topologies and PinFiles are processed top to bottom according
to the file.

YAML

Layouts written using YAML format:

	:docs1.5:`aws-ec2.yml <workspace/layouts/aws-ec2.yml>`

	:docs1.5:`dummy-new.yml <workspace/layouts/dummy-new.yml>`

JSON

New in version 1.5.0

Layouts can be written using JSON format.

	:docs1.5:`gcloud.json <workspace/layouts/gcloud.json>`

Jinja2

New in version 1.5.0

Topologies can be processed as templates using Jinja2.

Dummy Template

This layout template would be processed with a dictionary containing one
key named node_count.

	:docs1.5:`dummy.json <workspace/layouts/dummy.json>`

The PinFile.dummy.json contains the reference to the dummy.json layout.

{
 "dummy": {
 "topology": "dummy.json",
 "layout": "dummy.json"
 }
}

See also

:docs1.5:`PinFile.dummy.json <workspace/PinFile.dummy.json>`

$ linchpin -p PinFile.dummy.json --template-data '{ "node_count": 2 }' up

Advanced layout examples can be found by reading ra_inventory_layouts.

See also

Examples for all Providers

Examples for all Providers

LinchPin has many default providers. This choose-your-own-adventure page takes you through the basics to ensure success for each.

	OpenStack

	Libvirt

	Amazon Web Services

	Azure

	Google Cloud Platform

	VMware

	Beaker

	Duffy

	oVirt

	Docker

	Openshift

OpenStack

The OpenStack provider manages multiple types of resources.

os_server

OpenStack instances can be provisioned using this resource.

	:docs1.5:`Topology Example <workspace/topologies/os-server-new.yml>`

	Ansible module [http://docs.ansible.com/ansible/latest/os_server_module.html]

Note

Currently, the ansible module used is bundled with LinchPin. However,
the variables used are identical to the Ansible os_server module, except for
adding a count option.

Topology Schema

Within Linchpin, the os_server resource_definition has more options
than what is shown in the examples above. For each os_server definition, the
following options are available.

	Parameter

	required

	type

	ansible value

	comments

	name

	true

	string

	name

	Name of the instance

	flavor

	true

	string

	flavor

	Defines the compute, memory,
and storage capacity of the node

	image

	true

	string

	image

	The disk image used to provision
the server instances

	region

	false

	string

	region

	

	count

	false

	integer

	count

	

	keypair

	false

	string

	key_name

	Public key of an OpenSSH keypair
to be used for access to created
servers

	security_groups

	false

	string

	security_groups

	

	fip_pool

	false

	string

	floating_ip_pools

	

	networks

	false

	string

	networks

	

	userdata

	false

	string

	userdata

	

	volumes

	false

	list

	volumes

	

	boot_from_volume

	false

	string

	boot_from_volume

	

	terminate_volume

	false

	string

	terminate_volume

	

	volume_size

	false

	string

	volume_size

	

	boot_volume

	false

	string

	boot_volume

	

os_obj

OpenStack Object Storage can be provisioned using this resource.

	:docs1.5:`Topology Example <workspaces/openstack/topologies/os-obj-new.yml>`

	Ansible module [http://docs.ansible.com/ansible/latest/os_object_module.html]

os_vol

OpenStack Cinder Volumes can be provisioned using this resource.

	:docs1.5:`Topology Example <workspaces/openstack/topologies/os-vol-new.yml>`

	Ansible module [http://docs.ansible.com/ansible/latest/os_volume_module.html]

os_sg

OpenStack Security Groups can be provisioned using this resource.

	:docs1.5:`Topology Example <workspaces/openstack/topologies/os-sg-new.yml>`

	Ansible Security Group module [http://docs.ansible.com/ansible/latest/os_security_group_module.html]

	Ansible Security Group Rule module [http://docs.ansible.com/ansible/latest/os_security_group_rule_module.html]

os_network

OpenStack networks can be provisioned using this resource.

	:docs1.5:`Topology Example <workspaces/openstack/topologies/os-network.yml>`

	Ansible os_network module [https://docs.ansible.com/ansible/2.5/modules/os_network_module.html]

os_router

OpenStack routers can be provisioned using this resource.

	:docs1.5:`Topology Example <workspaces/openstack/topologies/os-router.yml>`

	Ansible os_router module [https://docs.ansible.com/ansible/latest/modules/os_router_module.html]

os_subnet

OpenStack subnets can be provisioned using this resource.

	:docs1.5:`Topology Example <workspaces/openstack/topologies/os-subnet.yml>`

	Ansible os_subnet module [https://docs.ansible.com/ansible/latest/modules/os_subnet_module.html]

os_keypair

OpenStack keypairs can be provisioned using this resource.

	:docs1.5:`Topology Example <workspaces/openstack/topologies/os-keypair.yml>`

	Ansible os_keypair module [https://docs.ansible.com/ansible/latest/modules/os_keypair_module.html]

Additional Dependencies

No additional dependencies are required for the OpenStack Provider.

Credentials Management

OpenStack provides several ways to provide credentials. LinchPin supports
some of these methods for passing credentials for use with OpenStack resources.

LinchPin honors the OpenStack environment variables such as $OS_USERNAME,
$OS_PROJECT_NAME, etc.

See the OpenStack documentation cli documentation [https://docs.openstack.org/python-openstackclient/pike/cli/man/openstack.html#manpage]
for details.

Note

No credentials files are needed for this method. When LinchPin calls
the OpenStack provider, the environment variables are automatically picked
up by the OpenStack Ansible modules, and passed to OpenStack for
authentication.

OpenStack provides a simple file structure using a file called
clouds.yaml [https://docs.openstack.org/os-client-config/latest/user/configuration.html],
to provide authentication to a particular tenant. A single clouds.yaml file
might contain several entries.

clouds:
 devstack:
 auth:
 auth_url: http://192.168.122.10:35357/
 project_name: demo
 username: demo
 password: 0penstack
 region_name: RegionOne
 trystack:
 auth:
 auth_url: http://auth.trystack.com:8080/
 project_name: trystack
 username: herlo-trystack-3855e889
 password: thepasswordissecrte

Using this mechanism requires that credentials data be passed into LinchPin.

An OpenStack topology can have a credentials section for each
resource_group, which requires the filename, and the profile name.

topology_name: topo
resource_groups:
 - resource_group_name: openstack
 resource_group_type: openstack
 resource_definitions:

 .. snip ..

 credentials:
 filename: clouds.yaml
 profile: devstack

Provisioning with credentials uses the --creds-path option. Assuming
the clouds.yaml file was placed in ~/.config/OpenStack, and the
topology described above, a provisioning task could occur.

$ linchpin -v --creds-path ~/.config/openstack up

Note

The clouds.yaml could be placed in the
default_credentials_path. In that case passing
--creds-path would be redundant.

Alternatively, the credentials path can be set as an environment variable,

$ export CREDS_PATH="/path/to/credential_dir/"
$ linchpin -v up

Libvirt

The libvirt provider manages two types of resources.

libvirt_node

Libvirt Domains (or nodes) can be provisioned using this resource.

	:docs1.5:`Topology Example <workspace/topologies/libvirt-new.yml>`

	Ansible module [http://docs.ansible.com/ansible/latest/virt_module.html]

Topology Schema

Within Linchpin, the libvirt_node resource_definition has more
options than what are shown in the examples above. For each libvirt_node
definition, the following options are available.

libvirt_network

Libvirt networks can be provisioned. If a libvirt_network is to be used
with a libvirt_node, it must precede it.

	:docs1.5:`Topology Example <workspace/topologies/libvirt-el7net.yml>`

	Ansible module [http://docs.ansible.com/ansible/latest/virt_net_module.html]

Topology Schema

Within Linchpin, the libvirt_network resource_definition has more
options than what are shown in the examples above. For each libvirt_network
definition, the following options are available.

	Parameter

	req’d

	type

	where used

	default

	comments

	role

	true

	string

	role

	
	

	name

	true

	string

	module: name

	
	

	uri

	false

	string

	module: name

	qemu:///system

	

	ip

	true

	string

	xml: ip

	
	

	dhcp_start

	false

	string

	xml: dhcp_start

	
	

	dhcp_end

	false

	string

	xml: dhcp_end

	
	

	domain

	false

	string

	xml: domain

	
	Automated DNS for guests

	forward_mode

	false

	string

	xml: forward

	nat

	

	forward_dev

	false

	string

	xml: forward

	
	

	bridge

	false

	string

	xml: bridge

	
	

	delete_on_destroy

	false

	boolean

	N/A

	False

	If true, libvirt destroy will
destroy and undefine the network

Note

This resource will not be torn down during a destroy action.
This is because other resources may depend on the now existing resource.

Additional Dependencies

The libvirt resource group requires several additional dependencies. The
following must be installed.

	libvirt-devel

	libguestfs-tools

	python-libguestfs

	libvirt-python

	python-lxml

For a Fedora 26 machine, the dependencies would be installed using dnf.

$ sudo dnf install libvirt-devel libguestfs-tools python-libguestfs
$ pip install linchpin[libvirt]

Additionally, because libvirt downloads images, certain SELinux libraries must
exist.

	libselinux-python

For a Fedora 26 machine, the dependencies would be installed using dnf.

$ sudo dnf install libselinux-python

If using a python virtual environment, the selinux libraries must be symlinked. Assuming
a virtualenv of ~/venv, symlink the libraries.

$ export LIBSELINUX_PATH=/usr/lib64/python2.7/site-packages
$ ln -s ${LIBSELINUX_PATH}/selinux ~/venv/lib/python2.7/site-packages
$ ln -s ${LIBSELINUX_PATH}/_selinux.so ~/venv/lib/python2.7/site-packages

Copying Images

New in version 1.5.1

By default, LinchPin manages the libvirt images in a directory that is accessible
only by the root user. However, adjustments can be made to allow an unprivileged
user to manage Libvirt via LinchPin. These settings can be modified in the
:docs1.5:`linchpin.conf <workspace/linchpin.conf>`

This configuration adjustment of linchpin.conf may work for the unprivileged
user herlo.

[evars]
libvirt_image_path = ~/libvirt/images/
libvirt_user = herlo
libvirt_become = no

The directory will be created automatically by LinchPin. However, the user may
need additional rights, like group membership to access Libvirt. Please see
https://libvirt.org for any additional configurations.

Credentials Management

Libvirt doesn’t require credentials via LinchPin. Multiple options are
available for authenticating against a Libvirt daemon (libvirtd). Most methods
are detailed here [https://libvirt.org/auth.html]. If desired, the uri for
the resource can be set using one of these mechanisms.

By default, however, libvirt requires sudo access to use. To allow users
without sudo access to provision libvirt instances, run the following commands
on the target machine:

	Create the libvirt group if it does not exist

$ getent group | grep libvirt
$ groupadd -g 7777 libvirt

	Add user account to libvirt and qemu groups

$ usermod -aG libvirt,qemu <user>

	Edit libvirtd configuration to add group

$ cat <<EOF >>/etc/libvirt/libvirtd.conf
unix_sock_group = "libvirt"
unix_sock_rw_perms = "0770"
EOF

	Restart the libvirtd daemon

$ systemctl restart libvirtd

The next time the user logs in, they will be able to provision libvirt disks
without sudo access

Amazon Web Services

The Amazon Web Services (AWS) provider manages multiple types of resources.

aws_ec2

AWS Instances can be provisioned using this resource.

	:docs1.5:`Topology Example <workspace/topologies/aws-ec2-new.yml>`

	:docs1.5:`Topology Example w/ VPC <workspace/topologies/aws-ec2-vpc.yml>`

	aws_ec2 module [http://docs.ansible.com/ansible/latest/ec2_module.html]

Topology Schema

Within Linchpin, the aws_ec2 resource_definition has more
options than what are shown in the examples above. For each aws_ec2
definition, the following options are available.

	Parameter

	required

	type

	ansible value

	comments

	role

	true

	string

	N/A

	

	name

	true

	string

	instance_tags

	name is set as
an instance_tag
value.

	flavor

	true

	string

	instance_type

	

	image

	true

	string

	image

	

	region

	false

	string

	region

	

	count

	false

	integer

	count

	

	keypair

	false

	string

	key_name

	

	security_group

	false

	string / list

	group

	

	vpc_subnet_id

	false

	string

	vpc_subnet_id

	

	assign_public_ip

	false

	boolean

	assign_public_ip

	

EC2 Inventory Generation

If an instance has a public IP attached, its hostname in public DNS, if
available, will be provided in the generated Ansible inventory file, and if not
the public IP address will be provided.

For instances which have a private IP address for VPC usage, the private IP
address will be provided since private EC2 DNS hostnames (e.g.
ip-10-0-0-1.ec2.internal) will not typically be resolvable outside of AWS.

For instances with both a public and private IP address, the public address is
always provided instead of the private address, so as to avoid duplicate runs
of Ansible on the same host via the generated inventory file.

aws_ec2_key

AWS SSH keys can be added using this resource.

	:docs1.5:`Topology Example <workspace/topologies/aws-ec2-key-new.yml>`

	ec2_key module [http://docs.ansible.com/ansible/latest/ec2_key_module.html]

Note

This resource will not be torn down during a destroy
action. This is because other resources may depend on the now existing
resource.

aws_s3

AWS Simple Storage Service buckets can be provisioned using this resource.

	:docs1.5:`Topology Example <workspace/topologies/aws-s3-new.yml>`

	aws_s3 module [http://docs.ansible.com/ansible/latest/aws_s3_module.html]

Note

This resource will not be torn down during a destroy
action. This is because other resources may depend on the now existing
resource.

aws_sg

AWS Security Groups can be provisioned using this resource.

	:docs1.5:`Topology Example <workspace/topologies/aws-sg-new.yml>`

	ec2_group module <http://docs.ansible.com/ansible/latest/ec2_group_module.html>

Note

This resource will not be torn down during a destroy
action. This is because other resources may depend on the now existing
resource.

aws_ec2_eip

AWS EC2 elastic ips can be provisioned using this resource.

	:docs1.5:`Topology Example <workspace/topologies/aws-ec2-eip.yml>`

	ec2_eip module <http://docs.ansible.com/ansible/latest/ec2_eip_module.html>

aws_ec2_vpc_net

AWS VPC networks can be provisioned using this resource.

	:docs1.5:`Topology Example <workspaces/topologies/aws-ec2-vpc-net.yml>`

	`ec2_vpc_net module <https://docs.ansible.com/ansible/latest/modules/ec2_vpc_net_module.html

>`_

aws_ec2_vpc_internet_gateway

Manage AWS VPC INTERNET Gateways.
* :docs1.5:`Topology Example <workspace/topologies/aws-ec2-vpc-internet-gateway.yml>`
* ec2_vpc_net module <https://docs.ansible.com/ansible/latest/modules/ec2_vpc_igw_module.html>

aws_ec2_vpc_nat_gateway

Manage AWS VPC NAT Gateways.

	:docs1.5:`Topology Example <workspace/topologies/aws-ec2-vpc-nat-gateway.yml>`

	ec2_vpc_net module [http://docs.ansible.com/ansible/latest/ec2_vpc_nat_gateway_module.html]

aws_ec2_vpc_subnet

AWS VPC subnets can be provisioned using this resource.
* :docs1.5:`Topology Example <workspace/topologies/aws-ec2-vpc-subnet.yml>`
* ec2_vpc_subnet module [https://docs.ansible.com/ansible/latest/modules/ec2_vpc_subnet_module.html?highlight=ec2_vpc_subnet]

aws_ec2_vpc_routetable

AWS VPC routetable can be provisioned using this resource.
* :docs1.5:`Topology Example <workspace/topologies/aws-ec2-vpc-routetable.yml>`
* ec2_vpc_route_table module [https://docs.ansible.com/ansible/latest/modules/ec2_vpc_route_table_module.html#ec2-vpc-route-table-module]

aws_ec2_vpc_endpoint

AWS VPC endpoint can be provisioned using this resource.
* :docs1.5:`Topology Example <workspace/topologies/aws-ec2-vpc-endpoint.yml>`
* ec2_vpc_endpoint module [https://docs.ansible.com/ansible/latest/modules/ec2_vpc_endpoint_module.html]

aws_ec2_elb_lb

AWS EC2 elb lb load balancer can be provisioned using this resource.
* :docs1.5:`Topology Example <workspace/topologies/aws-ec2-elb-lb.yml>`
* ec2_vpc_endpoint module [https://docs.ansible.com/ansible/latest/modules/ec2_elb_module.html]

Additional Dependencies

No additional dependencies are required for the AWS Provider.

Credentials Management

AWS provides several ways to provide credentials. LinchPin supports
some of these methods for passing credentials for use with AWS resources.

One method to provide AWS credentials that can be loaded by LinchPin is to use
the INI format that the AWS CLI tool [https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html]
uses.

Credentials File

An example credentials file may look like this for aws.

$ cat aws.key
[default]
aws_access_key_id=ARYA4IS3THE3NO7FACEB
aws_secret_access_key=0Hy3x899u93G3xXRkeZK444MITtfl668Bobbygls

[herlo_aws1_herlo]
aws_access_key_id=JON6SNOW8HAS7A3WOLF8
aws_secret_access_key=Te4cUl24FtBELL4blowSx9odd0eFp2Aq30+7tHx9

See also

Examples for all Providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first
is which credentials to use. The second is where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are
described by specifying the file, then the profile. As shown above, the
filename is ‘aws.key’. The user could pick either profile in that file.

topology_name: ec2-new
resource_groups:
 - resource_group_name: "aws"
 resource_group_type: "aws"
 resource_definitions:
 - name: demo-day
 flavor: m1.small
 role: aws_ec2
 region: us-east-1
 image: ami-984189e2
 count: 1
 credentials:
 filename: aws.key
 profile: default

The important part in the above topology is the credentials section. Adding
credentials like this will look up, and use the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is
~/.config/linchpin.

Hint

The default_credentials_path value uses the interpolated
:dirs1.5:`default_config_path <workspace/linchpin.conf#L22>` value, and
can be overridden in the :docs1.5:`linchpin.conf`.

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up aws-ec2-new

Note

The aws.key file could be placed in the
default_credentials_path. In that case passing
--creds-path would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up aws-ec2-new

Environment Variables

LinchPin honors the AWS environment variables

Provisioning

Provisioning with credentials uses the --creds-path option.

$ linchpin -v --creds-path ~/.config/aws up

Alternatively, the credentials path can be set as an environment variable,

$ export CREDS_PATH="~/.config/aws"
$ linchpin -v up

Azure

The Azure provider manages multiple types of resources.

Note

The dependencies is perfectly working for the latest version of Ansible,
if you are not using the latest version, may not work.

azure_vm

Azure VM Instances can be provisioned using this resource.

	Example

	azure_vm module [https://docs.ansible.com/ansible/latest/modules/azure_rm_virtualmachine_module.html]

Topology Schema

Within Linchpin, the azure_vm resource_definition has more
options than what are shown in the examples above. For each azure_vm
definition, the following options are available.

	Parameter

	required

	type

	ansible value

	comments

	role

	true

	string

	N/A

	

	vm_name

	true

	string

	name

	It can’t include
‘_’ and other
special char

	private_image

	false

	string

	image

	This takes
private images

	virtual_network_name

	false

	string

	virtual_network_name

	

	vm_username

	false

	string

	image

	

	vm_password

	false

	string

	image

	

	count

	false

	int

	
	

	resource_group

	true

	string

	resource_group

	

	vm_size

	false

	string

	vm_size

	

	public_image

	false

	dict

	image

	This para takes
public images

	vm_username

	false

	string

	admin_username

	

	vm_password

	false

	string

	admin_password

	

	public_key

	false

	string

	
	Copy you key here

	delete_all_attached

	false

	string

	remove_on_absent

	

	availability_set

	false

	string

	availability_set

	

azure_nsg

Azure Network Security Group can be provisioned using this resource.

	Example <workspaces/azure/Pinfile>`

	azure_nsg module <https://docs.ansible.com/ansible/latest/modules/azure_rm_securitygroup_module.html?highlight=azure%20security#examples>`_

Topology Schema

Within Linchpin, the azure_vm resource_definition has more
options than what are shown in the examples above. For each azure_vm
definition, the following options are available.

	Parameter

	required

	type

	ansible value

	comments

	role

	true

	string

	N/A

	

	name

	true

	string

	name

	

	purge_rules

	false

	string

	purge_rules

	

	rules

	false

	list(dict) | rules

	

	If you declare both public and private image, only the private will be taken

azure_api

Any Azure resources can be provisioned using this role, it supported by the Azure Api

	Example

	azure_api module [https://docs.ansible.com/ansible/latest/modules/azure_rm_resource_module.html#azure-rm-resource-module]

	Azure API [https://docs.microsoft.com/en-us/rest/api/?view=Azure]

Topology Schema

Within Linchpin, the azure_api resource_definition has more
options than what is shown in the examples above. For each azure_api
definition, the following options are available.

	Parameter

	required

	type

	ansible value

	comments

	role

	true

	string

	N/A

	

	resource_group

	true

	String

	resource_group

	

	resource_type

	true

	String

	resource_type

	

	resource_name

	true

	string

	resource_name

	

	api_version

	true

	string

	api_version

	

	body_path

	true

	string

	
	Path to request body

	url

	true

	string

	url

	

azure_loadbalancer

With this role you can provision and configure the Azure Load Balancer

	Example <workspaces/azure/Pinfile>`

	azure_loadbalancer module <https://docs.ansible.com/ansible/latest/modules/azure_rm_loadbalancer_module.html?highlight=azure%20load%20balance>`_

Topology Schema

Within Linchpin, the azure_loadbalancer resource_definition has more
options than what is shown in the examples above. For each azure_loadbalancer
definition, the following options are available.

	Parameter

	required

	type

	ansible value

	comments

	role

	true

	string

	N/A

	

	resource_group

	false

	string

	resource_group

	

	name

	true

	string

	name

	

	frontend_ip_configuration

	false

	string

	frontend_ip_configuration

	

	backend_address_pools

	false

	string

	backend_address_pools

	

	probes

	false

	string

	probes

	

	inbound_nat_pools

	false

	string

	inbound_nat_pools

	

	inbound_nat_rules

	false

	string

	inbound_nat_rules

	

	load_balacing_rules

	false

	string

	load_balacing_rules

	

azure_publicipaddress

With this role, you can provision and manage Azure public ip address

	Example <workspaces/azure/Pinfile>`

	azure_publicipaddress module <https://docs.ansible.com/ansible/latest/modules/azure_rm_publicipaddress_module.html?highlight=azure%20public%20address>`_

Topology Schema

Within Linchpin, the azure_publicipaddress resource_definition has more
options than what is shown in the examples above. For each azure_publicipaddress
definition, the following options are available.

	Parameter

	required

	type

	ansible value

	comments

	role

	true

	string

	N/A

	

	resource_group

	false

	string

	resource_group

	

	allocation_method

	true

	string

	allocation_method

	

	domain_name

	false

	string

	domain_name

	

	sku

	false

	string

	sku

	

azure_availabilityset

Any Azure resources can be provisioned using this role, it supported by the Azure Api

	Example <workspaces/azure/Pinfile>`

	azure_availabilityset module <https://docs.ansible.com/ansible/latest/modules/azure_rm_availabilityset_module.html?highlight=azure%20avail>`_

Topology Schema

Within Linchpin, the azure_availabilityset resource_definition has more
options than what is shown in the examples above. For each azure_availabilityset
definition, the following options are available.

	Parameter

	required

	type

	ansible value

	comments

	role

	true

	string

	N/A

	

	resource_group

	false

	string

	resource_group

	

	name

	true

	string

	name

	

	location

	false

	string

	name

	

	platform_update_domain_count

	false

	string

	platform_update_domain_count

	

	platform_fault_domain_count

	false

	string

	platform_fault_domain_count

	

	sku

	false

	string

	sku

	

azure_network_interface

Azure network interface can be provisioned using this role

	Example <workspaces/azure/Pinfile>`

	azure_rm_networkinterface module <https://docs.ansible.com/ansible/latest/modules/azure_rm_networkinterface_module.html?highlight=azure%20network%20interface>`_

Topology Schema

Within Linchpin, the azure_rm_networkinterface resource_definition has more
options than what is shown in the examples above. For each azure_rm_networkinterface
definition, the following options are available.

	Parameter

	required

	type

	ansible value

	comments

	role

	true

	string

	N/A

	

	resource_group

	false

	string

	resource_group

	

	name

	true

	string

	name

	

	virtual_network_name

	false

	string

	virtual_network

	

	subnet_name

	false

	string

	platform_update_domain_count

	

azure_resource_group

Azure network interface can be provisioned using this role

	Example <workspaces/azure/Pinfile>`

	azure_rm_resourcegroup module <https://docs.ansible.com/ansible/latest/modules/azure_rm_resourcegroup_module.html?highlight=azure%20resource%20group>`_

Topology Schema

Within Linchpin, the azure_rm_networkinterface resource_definition has more
options than what is shown in the examples above. For each azure_rm_networkinterface
definition, the following options are available.

	Parameter

	required

	type

	ansible value

	comments

	role

	true

	string

	N/A

	

	resource_group

	false

	string

	resource_group

	

	name

	true

	string

	name

	

	location

	false

	string

	location

	

azure_virtual_network

Azure virtual network can be provisioned using this role

	Example <workspaces/azure/Pinfile>`

	azure_rm_virtualnetwork module <https://docs.ansible.com/ansible/latest/modules/azure_rm_virtualnetwork_module.html?highlight=azure%20virtual%20network>`_

Topology Schema

Within Linchpin, the azure_rm_virtualnetwork resource_definition has more
options than what is shown in the examples above. For each azure_rm_virtualnetwork
definition, the following options are available.

	Parameter

	required

	type

	ansible value

	comments

	role

	true

	string

	N/A

	

	resource_group

	false

	string

	resource_group

	

	name

	true

	string

	name

	

	address_prefixes

	false

	string

	address_prefixes

	

azure_virtual_subnet

Azure network interface can be provisioned using this role

	Example <workspaces/azure/Pinfile>`

	azure_rm_subnet module <https://docs.ansible.com/ansible/latest/modules/azure_rm_subnet_module.html?highlight=azure%20subnet>`_

Topology Schema

Within Linchpin, the azure_rm_subnet resource_definition has more
options than what is shown in the examples above. For each azure_rm_subnet
definition, the following options are available.

	Parameter

	required

	type

	ansible value

	comments

	role

	true

	string

	N/A

	

	resource_group

	false

	string

	resource_group

	

	name

	true

	string

	name

	

	virtual_network_name

	false

	string

	virtual_network_name

	

	address_prefix

	false

	string

	address_prefix

	

Credentials Management

Linchpin supports Ansible authentication options [https://docs.ansible.com/ansible/latest/scenario_guides/guide_azure.html#authenticating-with-azure]:

	Active Directory

	Service Principal

Active Directory

Active Directory authentication works only with organization users (not guests).
You can create a new user in the organization but do not invite users.
The following keys are required in the credentials file for AD authentication:

	user
	The user name, you can verify it manually in Azure portal [https://portal.azure.com/].

	password
	The password, you can verify it manually in Azure portal [https://portal.azure.com/] and change [https://account.activedirectory.windowsazure.com/ChangePassword.aspx] it.

	subscription_id
	The subscription id to use, you can check what subscriptions [https://portal.azure.com/#blade/Microsoft_Azure_Billing/SubscriptionsBlade] available and
what permission you have in Azure portal [https://portal.azure.com/].

	tenant
	Is the Active Directory ID, and it is required if the user is member of
multiple directories. You can find tenant ID in Azure portal [https://portal.azure.com/] at
Azure Active Directory [https://portal.azure.com/#blade/Microsoft_AAD_IAM/ActiveDirectoryMenuBlade/Overview]

Example of credentials file with Azure Active directory:

[default]
user: linchpin@redhat.com
password: MySecretPassword
subscription_id: 2q3d2d-ad3adw-adwa3d-dwade-awedawee
tenant: 3rfawca-awd3daw-d3cc33-ASCEA-CAEESA-caceace

Service Principal

The following keys are required in the credentials file for SP authentication:

	client_id
	The client ID is the application ID.

	secret
	The application secret token, can be generated in Azure portal [https://portal.azure.com/]

	subscription_id
	The subscription id to use, you can check what subscriptions [https://portal.azure.com/#blade/Microsoft_Azure_Billing/SubscriptionsBlade] available and
what permission you have in Azure portal [https://portal.azure.com/].

	tenant
	Is the Active Directory ID, and it is required if the user is member of
multiple directories. You can find tenant ID in Azure portal [https://portal.azure.com/] at
Azure Active Directory [https://portal.azure.com/#blade/Microsoft_AAD_IAM/ActiveDirectoryMenuBlade/Overview]

Example of credentials file with Azure Service Principal:

[default]
client_id: 2q3d2d-ad3adw-adwa3d-dwade-awedawee
secret: 2q3d2d-ad3adw-adwa3d-dwade-awedawee
subscription_id: 2q3d2d-ad3adw-adwa3d-dwade-awedawee
tenant: 3rfawca-awd3daw-d3cc33-ASCEA-CAEESA-caceace

How to create new Service Principal in Azure portal

	Go to Azure Active Directory [https://portal.azure.com/#blade/Microsoft_AAD_IAM/ActiveDirectoryMenuBlade/Overview] in Azure portal [https://portal.azure.com/]

	Go to App registration on the left bar

	Create a new app

	The Application ID is client_id

	The Directory ID is tenant

	Go to Certificates and secrets on left bar

	Upload or create a new key, that is the secret

	Go to the Access Control of you resource group or subscription

	Click on Add button to add new role assignment

	Assign the role of Contributor to the application you just created

	Go to Subscription to find out its ID for subscription id

How to create new Service Principal using Azure command line client

accountname@Azure:~$ az ad sp create-for-rbac --name ServicePrincipalName
Changing "ServicePrincipalName" to a valid URI of "http://ServicePrincipalName", which is the required format used for service principal names
Creating a role assignment under the scope of "/subscriptions/dcc74c29-4db6-4c49-9a0f-ac0ee03fa17e"
 Retrying role assignment creation: 1/36
 Retrying role assignment creation: 2/36
 Retrying role assignment creation: 3/36
 Retrying role assignment creation: 4/36
{
 "appId": "xxxxxxxxxxxxxxxxxxxxxxxxxx",
 "displayName": "ServicePrincipalName",
 "name": "http://ServicePrincipalName",
 "password": "xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxx",
 "tenant": "xxxxx-xxxxx-xxxx-xxxx-xxxxxxxxxxxx"
}

Google Cloud Platform

The Google Cloud Platform (gcloud) provider manages one resource, gcloud_gce.

gcloud_gce

Google Compute Engine (gce) instances are provisioned using this resource.

	:docs1.5:`Topology Example <workspaces/topologies/gce-new.yml>`

	Ansible module [http://docs.ansible.com/ansible/latest/gce_module.html]

gcloud_gce_eip

Google Compute enginer external IP (gce_eip) are provisioned using this resource.

	:docs1.5:`Topology Example <workspaces/topologies/gce-eip.yml>`

	Ansible module <http://docs.ansible.com/ansible/latest/gce_eip_module.html>

gcloud_gce_net

Google compute engine network (gce_net) are provisioned using this resource.

	:docs1.5:`Topology Example <workspaces/topologies/gce-net.yml>`

	Ansible module <http://docs.ansible.com/ansible/latest/gce_net_module.html>

gcloud_gcdns_zone

Google DNS zone (gcdns_zone) are provisioned using this resource.

	:docs1.5:`Topology Example <workspaces/topologies/gcdns-zone.yml>`

	Ansible module <https://docs.ansible.com/ansible/latest/modules/gcdns_zone_module.html>

gcloud_gcdns_record

Google DNS zone records (gcdns_record) are provisioned using this resource.

	:docs1.5:`Topology Example <workspaces/topologies/gcdns-record.yml>`

	Ansible module <https://docs.ansible.com/ansible/latest/modules/gcdns_record_module.html>

gcloud_gcp_compute_network

Google cloud compute networks are provisioned using this resource.

	:docs1.5:`Topology Example <workspaces/topologies/gcp-compute-network.yml>`

	Ansible module <https://docs.ansible.com/ansible/latest/modules/gcp_compute_network_module.html>

gcloud_gcp_compute_router

Google cloud compute routers are provisioned using this resource.

	:docs1.5:`Topology Example <workspace/topologies/gcp-compute-router.yml>`

	Ansible module <https://docs.ansible.com/ansible/latest/modules/gcp_compute_router_module.html>

Additional Dependencies

No additional dependencies are required for the Google Cloud (gcloud) Provider.

Credentials Management

Google Compute Engine provides several ways to provide credentials. LinchPin supports
some of these methods for passing credentials for use with openstack resources.

Google Cloud Key File

GCloud allows for the creation of keyfiles for authentication. A keyfile will look something like this:

{
 "type": "service_account",
 "project_id": "[PROJECT-ID]",
 "private_key_id": "[KEY-ID]",
 "private_key": "-----BEGIN PRIVATE KEY-----\n[PRIVATE-KEY]\n-----END PRIVATE KEY-----\n",
 "client_email": "[SERVICE-ACCOUNT-EMAIL]",
 "client_id": "[CLIENT-ID]",
 "auth_uri": "https://accounts.google.com/o/oauth2/auth",
 "token_uri": "https://accounts.google.com/o/oauth2/token",
 "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
 "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/[SERVICE-ACCOUNT-EMAIL]"
}

To learn how to generate key files, see the google cloud documentation <https://cloud.google.com/iam/docs/creating-managing-service-account-keys>.

This mechanism requires that credentials data be passed into LinchPin. A GCloud topology can have a credentials section for each resource_group, which requires the filename and the profile name. By default, LinchPin searches for the filename in {{ workspace }}/credentials but can be made to search other places by setting the evars.default_credentials_path variable in your linchpin.conf. The credentials path can also be overridden by using the --creds-path flag.

topology_name: mytopo
resource_groups:
 - resource_group_name: gce
 - resource_group_type: gcloud
 resource_definitions:

 .. snip ..

 credentials:
 filename: gcloud.key

Environment Variables

LinchPin honors the gcloud environment variables.

Configuration Files

Google Cloud Platform provides tooling for authentication. See
https://cloud.google.com/appengine/docs/standard/python/oauth/ for options.

VMware

The VMware provider manages a single resource, vmware_guest.

vmware_guest

VMware VMs can be provisioned using this resource

	
	docs1.7

	Topology Example <workspace/topologies/vmware.yml>

	Ansible module https://docs.ansible.com/ansible/latest/modules/vmware_guest_module.html

Topology Schema

Within Linchpin, the vmware_guest supports all the Ansible module
options with the same schema structure. All the limitation of the module apply
too.

Additional Dependencies

The vmware resources group requires additional dependency, the following must be
installed:

	PyVmomi

$ pip install linchpin[vmware]

Credentials Management

Environment Variables

Linchpin honors the following environment variables:

	Environment variable

	Credentials variable

	Description

	VMWARE_PASSWORD

	password

	The password of the vSphere
vCenter or ESXi server

	VMWARE_USER

	username

	The username of the vSphere
vCenter or ESXi server.

	VMWARE_HOST

	hostname

	The hostname or IP address of
the vSphere vCenter or ESXi
server.

	VMWARE_PORT

	port

	The port number of the vSphere
vCenter or ESXi server.

	VMWARE_VALIDATE_CERTS

	validate_certs

	Allows connection when SSL
certificates are not valid.

Credentials File

An example credentials file may look like this for vmware.

$ cat vmware.key
 [default]
 username=root
 password=VMware1!
 hostname=192.168.122.125
 validate_certs=false

See also

Examples for all Providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first
is which credentials to use. The second is where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are
described by specifying the file, then the profile. As shown above, the
filename is ‘vmware.key’. The user could pick either profile in that file.

topology_name: vmware-new
resource_groups:
 - resource_group_name: vmware-new
 resource_group_type: vmware
 resource_definitions:
 - role: vmware_guest
 name: vmware-node
 cdrom:
 type: iso
 iso_path: "[ha-datacenter] tc_vmware4.iso"
 folder: /
 datastore: ha-datacenter
 disk:
 - size_mb: 10
 type: thin
 hardware:
 num_cpus: 1
 memory_mb: 256
 networks:
 - name: VM Network
 wait_for_ip_address: yes
 credentials:
 filename: vmware.key
 profile: default

The important part in the above topology is the credentials section. Adding
credentials like this will look up, and use the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is
~/.config/linchpin.

Hint

The default_credentials_path value uses the interpolated
:dirs1.5:`default_config_path <workspace/linchpin.conf#L22>` value, and
can be overridden in the :docs1.5:`linchpin.conf`.

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up vmware-new

Note

The vmware.key file could be placed in the
default_credentials_path. In that case passing
--creds-path would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up vmware-new

Beaker

The Beaker (bkr) provider manages a single resource, bkr_server.

bkr_server

Beaker instances are provisioned using this resource.

	:docs1.5:`Topology Example <workspace/topologies/bkr-new.yml>`

The ansible modules for beaker are written and bundled as part of LinchPin.

	:code1.5:`bkr_server.py <linchpin/provision/library/bkr_server.py>`

	:code1.5:`bkr_info.py <linchpin/provision/library/bkr_info.py>`

Topology Schema

Within Linchpin, the bkr_server resource_definition has more
options than what are shown in the examples above. For each bkr_server
role definition, the following options are available.

	Parameter

	required

	type

	ansible value

	default

	role

	true

	string

	N/A

	

	whiteboard

	false

	string

	whiteboard

	Provisioned by
LinchPin

	job_group

	false

	string

	job_group

	

	cancel_message

	false

	string

	cancel_message

	

	max_attempts

	false

	string

	max_attempts

	

	attempt_wait_time

	false

	integer

	attempt_wait_time

	

	ssh_keys_path

	false

	string

	ssh_keys_path

	Credentials
directory

	recipesets

	false

	string

	recipesets

	see table below

recipesets

Because recipesets is how beaker requests systems, it’s a large part of what the
topology schema includes. There are several ways to request systems. This table
describes the available recipesets options.

	Parameter

	required

	type

	sub-field layout options

	distro

	false

	string

	N/A

	family

	false

	string

	N/A

	tags

	false

	list

	list of strings

	name

	false

	string

	N/A

	ks_meta

	false

	string

	N/A

	kernel_options

	false

	string

	N/A

	kernel_options_post

	false

	string

	N/A

	arch

	false

	string

	N/A

	variant

	false

	string

	N/A

	bkr_data

	false

	string

	N/A

	method

	false

	string

	N/A

	count

	false

	string

	N/A

	ids

	false

	list

	N/A

	taskparam

	false

	list

	list of strings

	keyvalue

	false

	list

	list of strings

	hostrequires

	false

	list

	param | required | type

	tag

	true

	string

	op

	false

	string

	value

	false

	int / string

	type

	false

	string

	dict

	force

	false

	string

	dict

	rawxml | false | string

	reserve_duration

	false

	int

	N/A

	repos

	false

	list

	dict baseurl

	install

	false

	list

	list of strings

	ks_append

	false

	list

	list of strings

	ssh_key

	false

	list

	list of strings

	ssh_key_file

	false

	list

	list of file names

	kickstart

	false

	string

	absolute path to a kickstart template

	partitions

	false

	list

	param | required | type

	name | true | string
size | true | integer
fs | false | string
type | false | string

Additional Dependencies

The beaker resource group requires several additional dependencies. The
following must be installed.

	beaker-client>=23.3

It is also recommended to install the python bindings for kerberos.

	python-krbV

For a Fedora 26 machine, the dependencies could be installed using dnf.

$ sudo dnf install python-krbV
$ wget https://beaker-project.org/yum/beaker-server-Fedora.repo
$ sudo mv beaker-server-Fedora.repo /etc/yum.repos.d/
$ sudo dnf install beaker-client

Alternatively, with pip, possibly within a virtual environment.

$ pip install linchpin[beaker]

Credentials Management

Beaker provides several ways to authenticate. LinchPin supports these methods.

	Kerberos

	OAuth2

Note

LinchPin doesn’t support the username/password authentication
mechanism. It’s also not recommended by the Beaker Project, except for
initial setup.

Duffy

Duffy is a tool for managing pre-provisioned systems in CentOS’ CI environment.
The Duffy provider manages a single resource, duffy_node.

duffy_node

The duffy_node resource provides the ability to provision using the
duffy api [https://wiki.centos.org/QaWiki/CI/Duffy].

	:docs1.5:`Topology Example <workspace/topologies/duffy-new.yml>`

The ansible module for duffy exists in its own
repository [https://github.com/CentOS-PaaS-SIG/duffy-ansible-module].

Using Duffy

Duffy can only be run within the CentOS CI environment. To get access, follow
this guide [https://wiki.centos.org/QaWiki/CI/GettingStarted]. Once access
is granted, the duffy ansible module can be used.

Additional Dependencies

Duffy doesn’t require any additional dependencies, but does need to be included
in the Ansible library path to work properly. See the ansible documentation [http://docs.ansible.com/ansible/latest/intro_configuration.html#library] for
help addding a library path.

Credentials Management

Duffy uses a single file, generally found in the user’s home directory, to
provide credentials. It contains a single line, which has the API key which is
passed to duffy via the API.

For LinchPin to provision, duffy.key must exist.

A duffy topology can have a credentials section for each
resource_group, which requires a filename.

topology_name: topo
resource_groups:
 - resource_group_name: duffy
 resource_group_type: duffy
 resource_definitions:

 .. snip ..

 credentials: duffy.key

By default, the location searched for the duffy.key is the user’s home
directory, as stated above. However, the credentials path can be set using
--creds-path option. Assuming the duffy.key file was placed in
~/.config/duffy, using the topology described above, a provisioning task
could occur.

$ linchpin -v --creds-path ~/.config/duffy up

Alternatively, the credentials path can be set as an environment variable,

$ export CREDS_PATH="~/.config/duffy"
$ linchpin -v up

oVirt

The ovirt provider manages a single resource, ovirt_vms.

ovirt_vms

oVirt Domains/VMs can be provisioned using this resource.

	:docs1.5:`Topology Example <workspace/topologies/ovirt-new.yml>`

	Ansible module [http://docs.ansible.com/ansible/latest/ovirt_module.html]

Additional Dependencies

There are no known additional dependencies for using the oVirt provider
for LinchPin.

Credentials Management

An oVirt topology can have a credentials section for each
resource_group, which requires the filename, and the profile name.

Consider the following file, named ovirt_creds.yml.

clouds:
 ge2:
 auth:
 ovirt_url: http://192.168.122.10/
 ovirt_username: demo
 ovirt_password: demo

An oVirt topology can have a credentials section for each
resource_group, which requires the filename and profile name.

topology_name: topo
resource_groups:
 - resource_group_name: ovirt
 resource_group_type: ovirt
 resource_definitions:

 .. snip ..

 credentials:
 filename: ovirt_creds.yml
 profile: ge2

Provisioning

Provisioning with credentials uses the --creds-path option. Assuming
the credentials file was placed in ~/.config/ovirt, and the
topology described above, a provision task could occur.

$ linchpin -v --creds-path ~/.config/ovirt up

Alternatively, the credentials path can be set as an environment variable,

$ export CREDS_PATH="~/.config/ovirt"
$ linchpin -v up

Docker

The docker provider manages docker_container and docker_image resources.

	:docs1.5:`Topology Example <workspaces/docker/topologies/docker-new.yml>`

docker_container

The docker_container resource provides the ability to provision a Docker
container. It is implemented as a wrapper around the Ansible’s docker_container <https://docs.ansible.com/ansible/latest/modules/docker_container_module.html>
module so that same requirements, parameters, and behavior are expected.

Topology Schema

Within Linchpin, the docker_container resource_definition has more
options than what are shown in the examples above. For each docker_container
definition, the same options of the Ansible docker_container module are available. The :term: name :term: option is required.

See the docker_container parameters <https://docs.ansible.com/ansible/latest/modules/docker_container_module.html#parameters> for the complete list and defaults.

docker_image

The docker_image resource provides the ability to manage a Docker image. It is implemented as a wrapper around the Ansible’s docker_image <https://docs.ansible.com/ansible/latest/modules/docker_image_module.html> module so that same requirements, parameters, and behavior are expected.

Topology Schema

Within Linchpin, the docker_image resource_definition has more
options than what are shown in the examples above. For each docker_image
definition, the same options of the Ansible docker_image module are available. The :term: name :term: option is required.

See the docker_image parameters <https://docs.ansible.com/ansible/latest/modules/docker_image_module.html#parameters> for the complete list and defaults.

Note

The provider assume that the cacert_path, cert_path, path, and load_path parameter value are relative to the workspace path, unless its value is absolute (e.g. /path/to/cert) or relative (e.g. ./path/to/cert) to the OS filesystem.

Additional Dependencies

The docker resource group requires the same dependencies of the Ansible docker_container module. See the docker_container requirements <https://docs.ansible.com/ansible/latest/modules/docker_container_module.html#requirements> documentation for the complete list of dependencies and any further detail.

Openshift

The openshift provider manages two resources, openshift_inline, and openshift_external.
However, both of the resource types are managed by module k8s Ansible module. Usage of either one
will result in redirection to k8s module with different parameters.

Prior to linchpin 1.6.5,
The Ansible module for openshift is written and bundled as part of LinchPin.
* :code1.5:`openshift.py <linchpin/provision/library/openshift.py>`

After 1.6.5 bundled ansible module is being replaced by upstream ansible kubernetes module.
Refer: K8s module [https://docs.ansible.com/ansible/2.6/modules/k8s_module.html].
Linchpin supports all the attributes mentioned in k8s module.

openshift_inline

Openshift instances can be provisioned using this resource. Resources are
detail inline.
* :docs1.5:`Topology Example <workspace/topologies/openshift-new.yml>`

Example PinFile:

openshift_external

	Openshift instances can be provisioned using this resource. Resources are
	detail in an external file.

Example PinFile:

Topology Schema:

openshift_inline and opeshift_external resource definitions in linchpin
follow the schema identical to ansible k8s module.
The following parameters are allowed in a linchpin topology:

Additional Dependencies

There are no known additional dependencies for using the openshift provider
for LinchPin. Since openshift client dependecy is included as part of linchpin’s
core requirements.

Credentials Management

An openshift topology can have a credentials section for each
resource_group, which requires the api_endpoint, and the api_token
values.
Openshift honors –creds-path in linchpin. The credential file
passed needs to be formatted as follows.
Further, it also honors all the evironment variables that are supported by
ansible k8s module.
Refer: K8s module [https://docs.ansible.com/ansible/2.6/modules/k8s_module.html].
Linchpin defaults to environment variables if the credentials section is ommited
or the –creds-path does not contain the openshift credential file.

default:
 api_endpoint: https://192.168.42.115:8443
 api_token: 4_6A86rcZqdVBIbPwJQnsz33mO35O_PnSH2okk8_190
optional parameters
api_version: v1 # defaults to version 1
cert_file: /path/to/cert_file
context: contextname
key_file: /path/to/key_file
kube_config: /path/to/kube_config
ssl_ca_cert: /path/to/ssl_ca_cert
username: username # not needed when api_token is used
password: ******** # not needed when api_token is used
verify_ssl: no #defaults to no. Needs to be set to yes when ssl_ca_cert is used

test:
 api_endpoint: https://192.168.42.115:8443
 api_token: 4_6A86rcZqdVBIbPwJQnsz33mO35O_PnSH2okk8_190

topology_name: topo
resource_groups:
 - resource_group_name: openshift
 resource_group_type: openshift
 resource_definitions:
 - name: openshift
 role: openshift_inline
 definition:

 .. snip ..

 credentials:
 filename: name_of_credsfile.yaml # fetched from --creds-path is provided
 profile: name_of_profile # defaults to 'default' profile in cred_file

Tid bits :

How to get to know API_ENDPOINT and API_TOKEN:

Once the openshift cluster is up and running try logging into openshift using the following command

oc login

After login run following command to get the API_ENDPOINT:

oc version | grep Server | awk '{print $2}'

Run the following command to get API_TOKEN

oc whomai -t

Make sure your openshift user has permissions to create resources:

Openshift by default imposes many restrictions on users when it comes to
creation . One can always manage roles to get appropriate roles.
if its just a development environment please use following command to give
admin user privileges to user
.. code-block:

oc adm policy add-cluster-role-to-user cluster-admin <username> --as=system:admin

Refer: Openshift role management [https://docs.openshift.com/container-platform/3.3/admin_solutions/user_role_mgmt.html].

Advanced Topics

Provisioning in LinchPin is a fairly simple process. However, LinchPin also
provides some very flexible and powerful features. These features can
sometimes be complex, which means most users will likely not use them. Those
features are covered here.

	Inventory Layouts

	The RunDB Explained

	RunDB Drivers

	Context Distiller

	PinFile Configs

Inventory Layouts

When generating an inventory, LinchPin provides some very flexible options. From the simple Layouts to much more complex options, detailed here.

inventory_file

New in version 1.5.2

When an layout is provided in the PinFile, LinchPin automatically generates
a static inventory for Ansible. The inventory filename is dynamically generated based
upon the name of the target and the uhash. However, the value can be overridden
simply by adding the inventory_file option. The uhash can be disabled for all targets
by setting the enable_uhash flag to False in linchpin.conf or for a subset of
targets by using the --disable-uhash flag when running linchpin up and providing
a comma-separated list of targets

inventory_layout:
 inventory_file: /path/to/dummy.inventory
 vars:
 .. snip ..

Using LinchPin or Ansible variables

New in version 1.5.2

It’s likely that the inventory file is based upon specific Linchpin
(or Ansible) variables. In this case, the values need to be wrapped as
raw values. This allows LinchPin to read the string in unparsed and
pass it to the Ansible parser.

inventory_layout:
 inventory_file: "{% raw -%}{{ workspace }}/inventories/dummy-new-{{ uhash }}.inventory{%- endraw %}"

Using Environment variables

Additionally, using environment variables requires the raw values.

host_groups:
 all:
 vars:
 ansible_user: root
 ansible_private_key_file: |
 "{% raw -%}{{ lookup('env', 'TESTLP') | default('/tmp', true) }}/CSS/keystore/css-central{%- endraw %}"

The RunDB Explained

Attention

Much of the information below began in v1.2.0 and later.
However, much of the data did not exist until later on, generally in
version 1.5.0 or later. Some cases, where noted, the data is only planned,
and does not yet exist.

The RunDB is the central database which stores transactions and target-based
runs each time any LinchPin action is performed. The RunDB stores detailed
data, including inputs like topology, inventory layout, hooks; and outputs
like resource return data, ansible inventory filename and data, etc.

RunDB Storage

The RunDB is stored using a JSON format by default. TinyDB [http://tinydb.readthedocs.io/en/latest/] currently provides the backend.
It is a NOSQL database, which writes out transactional records to a single
file. Other databases could provide a backend, as long as a driver is written and
included.

TinyDB is included in a class called TinyRunDB [https://github.com/CentOS-PaaS-SIG/linchpin/blob/develop/linchpin/rundb/tinyrundb.py].
TinyRunDB is an implementation of a parent class, called BaseDB, which in turn
is a subclass of the abstract RunDB class.

Records are the main way for items to be stored in the RunDB. There are two
types of records stored in the RunDB, target, and transaction.

Transaction Records

Each time any action (eg. linchpin up) occurs using linchpin, a
transaction record is stored. The transaction records are stored in the
‘linchpin’ table. The main constraint to this is that a target called
linchpin cannot be used.

Transaction Records consist of a Transaction ID (tx_id), the action and
a target information for each target acted upon during the specified
transaction. A single record could have multiple targets listed.

"136": {
 "action": "up",
 "targets": [
 {
 "dummy-new": {
 "290": {
 "rc": 0,
 "uhash": "27e1"
 }
 },
 "libvirt-new": {
 "225": {
 "rc": 0,
 "uhash": "d88c"
 }
 }
 }
]
},

In every case, the target data included is the name, run-id, return code (rc),
and uhash. The linchpin journal provides a transaction view to show this
data in human readable format.

$ linchpin journal --view tx -t 136

ID: 136 Action: up

Target Run ID uHash Exit Code

dummy-new 290 27e1 0
libvirt-new 225 d88c 0

===

Target Records

Target Records are much more detailed. Generally, the target records
correspond to a specific Run ID (run_id). These can also be referenced via
the linchpin journal command, using the target (default) view.

$ linchpin journal dummy-new --view target

Target: dummy-new
run_id action uhash rc

225 up f9e5 0
224 destroy 89ea 0
223 up 89ea 0

The target record data is where the detail lies. Each record contains several
sections, followed by possibly several sub-sections. A complete target record
is very large. Let’s have a look at record 225 for the ‘dummy-new’ target.

"225": {
 "action": "up",
 "end": "03/27/2018 12:18:21 PM",
 "inputs": [
 {
 "topology_data": {
 "resource_groups": [
 {
 "resource_definitions": [
 {
 "count": 3,
 "name": "web",
 "role": "dummy_node"
 },
 {
 "count": 1,
 "name": "test",
 "role": "dummy_node"
 }
],
 "resource_group_name": "dummy",
 "resource_group_type": "dummy"
 }
],
 "topology_name": "dummy_cluster"
 }
 },
 {
 "layout_data": {
 "inventory_layout": {
 "hosts": {
 "example-node": {
 "count": 3,
 "host_groups": [
 "example"
]
 },
 "test-node": {
 "count": 1,
 "host_groups": [
 "test"
]
 }
 },
 "inventory_file": "{{ workspace }}/inventories/dummy-new-{{ uhash }}.inventory",
 "vars": {
 "hostname": "__IP__"
 }
 }
 }
 },
 {
 "hooks_data": {
 "postup": [
 {
 "actions": [
 "echo hello"
],
 "name": "hello",
 "type": "shell"
 }
]
 }
 }
],
 "outputs": [
 {
 "resources": [
 {
 "changed": true,
 "dummy_file": "/tmp/dummy.hosts",
 "failed": false,
 "hosts": [
 "web-f9e5-0.example.net",
 "web-f9e5-1.example.net",
 "web-f9e5-2.example.net"
]
 },
 {
 "changed": true,
 "dummy_file": "/tmp/dummy.hosts",
 "failed": false,
 "hosts": [
 "test-f9e5-0.example.net"
]
 }
]
 }
],
 "rc": 0,
 "start": "03/27/2018 12:18:02 PM",
 "uhash": "f9e5",
 "cfgs": [
 {
 "evars": []
 },
 {
 "magics": []
 },
 {
 "user": []
 }
]
},

As might be gleaned from looking at the JSON, there are a few main sections.
Some of these sections, have subsections. The main sections include:

* action
* start
* end
* uhash
* rc
* inputs
* outputs
* cfgs

Most of these sections are self-explanatory, or can be easily determined.
However, there are three that may need further explanation.

Inputs

The RunDB stored all inputs in the “inputs” section.

"inputs": [
 {
 "topology_data": {
 "resource_groups": [
 {
 "resource_definitions": [
 {
 "count": 3,
 "name": "web",
 "role": "dummy_node"
 },
 {
 "count": 1,
 "name": "test",
 "role": "dummy_node"
 }
],
 "resource_group_name": "dummy",
 "resource_group_type": "dummy"
 }
],
 "topology_name": "dummy_cluster"
 }
 },
 {
 "layout_data": {
 "inventory_layout": {
 "hosts": {
 "example-node": {
 "count": 3,
 "host_groups": [
 "example"
]
 },
 "test-node": {
 "count": 1,
 "host_groups": [
 "test"
]
 }
 },
 "inventory_file": "{{ workspace }}/inventories/dummy-new-{{ uhash }}.inventory",
 "vars": {
 "hostname": "__IP__"
 }
 }
 }
 },
 {
 "hooks_data": {
 "postup": [
 {
 "actions": [
 "echo hello"
],
 "name": "hello",
 "type": "shell"
 }
]
 }
 }
],

Currently, the inputs section has three sub-sections, topology_data,
layout_data, and hooks_data. These three sub-sections hold
relevant data. The use of this data is generally for record-keeping, and more
recently to allow for reuse of the data with linchpin up/destroy actions.

Additionally, some of this data is used to create the outputs, which are
stored in the outputs section.

Outputs

Going forward, the outputs section will contain much more data than is
displayed below. Items like ansible_inventory, and user_data will also
appear in the database. These will be provided in future development.

"outputs": [
 {
 "resources": [
 {
 "changed": true,
 "dummy_file": "/tmp/dummy.hosts",
 "failed": false,
 "hosts": [
 "web-f9e5-0.example.net",
 "web-f9e5-1.example.net",
 "web-f9e5-2.example.net"
]
 },
 {
 "changed": true,
 "dummy_file": "/tmp/dummy.hosts",
 "failed": false,
 "hosts": [
 "test-f9e5-0.example.net"
]
 }
]
 }
],

The lone sub-section is resources. For the dummy-new target,
the data provided is simplistic. However, for providers like openstack or aws,
the resources become quite large and extensive. Here is a snippet of an
openstack resources sub-section.

"resources": [
 {
 "changed": true,
 "failed": false,
 "ids": [
 "fc96e134-4a68-4aaa-a053-7f53cae21369"
],
 "openstack": [
 {
 "OS-DCF:diskConfig": "MANUAL",
 "OS-EXT-AZ:availability_zone": "nova",
 "OS-EXT-STS:power_state": 1,
 "OS-EXT-STS:task_state": null,
 "OS-EXT-STS:vm_state": "active",
 "OS-SRV-USG:launched_at": "2017-11-27T19:43:54.000000",
 "OS-SRV-USG:terminated_at": null,
 "accessIPv4": "10.8.245.175",
 "accessIPv6": "",
 "addresses": {
 "atomic-e2e-jenkins-test": [
 {
 "OS-EXT-IPS-MAC:mac_addr": "fa:16:3e:ba:0e:5e",
 "OS-EXT-IPS:type": "fixed",
 "addr": "172.16.171.15",
 "version": 4
 },
 {
 "OS-EXT-IPS-MAC:mac_addr": "fa:16:3e:ba:0e:5e",
 "OS-EXT-IPS:type": "floating",
 "addr": "10.8.245.175",
 "version": 4
 }
]
 },
 "adminPass": "<REDACTED>",
 "az": "nova",
 "cloud": "",
 "config_drive": "",
 "created": "2017-11-27T19:43:47Z",
 "disk_config": "MANUAL",
 "flavor": {
 "id": "2",
 "name": "m1.small"
 },
 "has_config_drive": false,
 "hostId": "20a84eb5691c546defeac6b2a5b4586234aed69419641215e0870a64",
 "host_id": "20a84eb5691c546defeac6b2a5b4586234aed69419641215e0870a64",
 "id": "fc96e134-4a68-4aaa-a053-7f53cae21369",
 "image": {
 "id": "eae92800-4b49-4e81-b876-1cc61350bf73",
 "name": "CentOS-7-x86_64-GenericCloud-1612"
 },
 "interface_ip": "10.8.245.175",
 "key_name": "ci-factory",
 "launched_at": "2017-11-27T19:43:54.000000",
 "location": {
 "cloud": "",
 "project": {
 "domain_id": null,
 "domain_name": null,
 "id": "6e65fbc3161648e78fde849c7abbd30f",
 "name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"
 },
 "region_name": "",
 "zone": "nova"
 },
 "metadata": {},
 "name": "database-44ee-1",
 "networks": {},
 "os-extended-volumes:volumes_attached": [],
 "power_state": 1,
 "private_v4": "172.16.171.15",
 "progress": 0,
 "project_id": "6e65fbc3161648e78fde849c7abbd30f",
 "properties": {
 "OS-DCF:diskConfig": "MANUAL",
 "OS-EXT-AZ:availability_zone": "nova",
 "OS-EXT-STS:power_state": 1,
 "OS-EXT-STS:task_state": null,
 "OS-EXT-STS:vm_state": "active",
 "OS-SRV-USG:launched_at": "2017-11-27T19:43:54.000000",
 "OS-SRV-USG:terminated_at": null,
 "os-extended-volumes:volumes_attached": []
 },
 "public_v4": "10.8.245.175",
 "public_v6": "",
 "region": "",
 "security_groups": [
 {
 "description": "Default security group",
 "id": "1da85eb2-3c51-4729-afc4-240e187a30ce",
 "location": {
 "cloud": "",
 "project": {
 "domain_id": null,
 "domain_name": null,
 "id": "6e65fbc3161648e78fde849c7abbd30f",
 "name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"
 },
 .. snip ..

Note

The data above continues for several more pages, and would take up
too much space to document. A savvy user might cat the rundb file and pipe
it to the python ‘json.tool’ module.

Each provider returns a large structure like this as results of the
provisioning (up) process. For the teardown, the data can be large, but is
generally more succinct.

RunDB Drivers

Custom database drivers can be added to LinchPin. LinchPin requires that these drivers contain certain functions in order to interface with the existing LinchPin code.

Existing Drivers

Currently, LinchPin supports two drivers.

TinyDB

This is the default database driver for LinchPin. It has no exernal dependencies but cannot support reading and writing from multiple linchpin processes at the same time. If you need this functionality, you should use another driver.

MongoDB

This driver has the advantage of concurrency, but also requires a daemon in order to run.

Adding Custom Drivers

All database drivers for LinchPin must extend the linchpin.rundb.BaseDB class and contain the following functions:

@schema.setter
def schema(self, schema)

Sets the schema property for the class. If your database requires a schema (such as MySQL), this is where you should set it.

def init_table(self, table)

Sets up the table for the current run of LinchPin. Returns a run_id for the next run. run_id is a variable used to identify a document in the RunDB. It begins at 1 and increments from there.

def update_record(self, table, run_id, key, value)

updates a single record in the database. Note that the “outputs” record is a list containing two items: a dict in the format of { “resources”: [] } and another one in the format of { “inventory_path”: [] }. If a resources dict is passed to update_record(), the array needs to be appended to the existing resources array. If the driver supports concurrent transactions, care must be taken to avoid race conditions.

def get_tx_record(self, tx_id)

Retrieves a single transaction record for the rundb. A transaction record contains a list of the targets provisioned, their uhashes and their return codes. It does not contain the topology, layouts, or outputs from the cloud.

def get_tx_records(self, tx_ids)

Gets multiple records corresponding with a list of transaction ids.

def get_run_id(self, table, action='up')

Returns the id corresponding with the most recent instance of the given action.

def get_record(self, table, action=None, run_id=None)

Returns a single record. If a run_id is supplied, the record corresponding with the given run_id will be returned. Else if an action is supplied, the most recent record corresponding with that action is supplied.

def get_records(self, table, count=10)

Returns the count most recent records.

def get_tables(self)

Returns a list of tables.

def remove_record(self, table, key)

Removes a record from the rundb

def purge(self, table)

Deletes a single database

In addition, the functions that use the database use the @usedb decorator, which opens the database, performs the operation, and closes it again

def usedb(func):
 def func_wrapper(*args, **kwargs):
 args[0]._opendb()
 x = func(*args, **kwargs)
 args[0]._closedb()
 return x
 return func_wrapper

Context Distiller

New in version 1.5.2

The purpose of the Context Distiller is to take outputs from provisioned
resources and provide them to a user as a json file.

The distiller currently supports the following roles:

* os_server
* aws_ec2
* bkr_server
* dummy_node (for testing)

For each role, the distiller collects specific fields from the
resource data.

Note

Please be aware that this feature is planned to integrated with
other tooling to make extracting resource data more flexible in the future.

Enabling the Distiller

To enable the Context Distiller, the following must be set in the
:dirs1.5:`linchpin.conf <workspace/linchpin.conf>`.

[lp]
distill_data = True

disable generating the resources file
[evars]
generate_resources = False

Note

Other settings may already be in these sections. If that is the case,
just add these settings to the proper section.

Hint

It may not be immediately obvious, as LinchPin uses the RunDB
data to return resource data from a run. In this way, the resource data can
be stored somewhere and retrieved at any time by future tooling. Because of
this, the resources file is disabled. In this way, the resource data is
stored solely in the RunDB for easy retrieval.

Fields to Retreive

Warning

Modifying the distilled fields can cause unexpected results.
MODIFY THIS DATA AT YOUR OWN RISK!

Within the :code1.5:`linchpin.constants <linchpin/linchpin.constants>` file,
the [distiller] section exists. Described within this section is how each
role gathers the applicable data to distill.

[distiller]
bkr_server = id,url,system
dummy_node: hosts
aws_ec2 = instances.id,instances.public_ip,instances.private_ip,instances.public_dns_name,instances.private_dns_name,instances.tags:name
os_server = servers.id,servers.interface_ip,servers.name,servers.private_v4,servers.public_v4

If the distiller is enabled, the bkr_server role will distill the id, url,
and system values for each instance provisioned during the transaction.

Output

The distiller creates one file, placed in
<workspace>/resources/linchpin.distilled. Each time an ‘up’ transaction
is performed, the distilled data is overwritten.

If no output is recorded, it’s likely that the provisioning didn’t complete
successfully, or an error occurred during data collection. The data is still
available in the RunDB.

This is the output for the aws_ec2 role, using the aws-ec2-new target,
which provisioned two instances.

{
 "aws-ec2-new": [
 {
 "id": "i-0d8616a3d08a67f38",
 "name": "demo-day",
 "private_dns_name": "ip-172-31-18-177.us-west-2.compute.internal",
 "private_ip": "172.31.18.177",
 "public_dns_name": "ec2-54-202-80-27.us-west-2.compute.amazonaws.com",
 "public_ip": "54.202.80.27"
 },
 {
 "id": "i-01112909e184530fc",
 "name": "demo-night",
 "private_dns_name": "ip-172-31-20-190.us-west-2.compute.internal",
 "private_ip": "172.31.20.190",
 "public_dns_name": "ec2-54-187-172-80.us-west-2.compute.amazonaws.com",
 "public_ip": "54.187.172.80"
 }
]
}

PinFile Configs

You can use the cfgs section of the PinFile to define variables for use in inventories. These variables map to values in the json returned by the relevant provider, and are dot-separated. For example, the variable __IP__ in the cfgs below would map to the address 55.234.16.11 in the following json:

{
 'addresses': [
 {
 'public_v4': '55.234.16.11'
 },
 {
 'public_v4': '219.16.122.93'
 }
]
}

cfgs:
 aws:
 __IP__: addresses.0.public_v4

Information on the json returned by different providers can be found below:

	AWS Sample Output

	Dummy Sample Output

	Libvirt Sample Output

	openstack sample output

AWS Sample Output

{
 "kernel": null,
 "root_device_type": "ebs",
 "private_dns_name": "",
 "public_ip": "",
 "private_ip": "",
 "id": "i-01cc0455abe8465b8",
 "ebs_optimized": false,
 "state": "running",
 "virtualization_type": "hvm",
 "root_device_name": "/dev/sda1",
 "ramdisk": null,
 "block_device_mapping": {
 "/dev/sdb": {
 "status": "attached",
 "delete_on_termination": true,
 "volume_id": "vol-0f3311851115c8241"
 },
 "/dev/sda1": {
 "status": "attached",
 "delete_on_termination": true,
 "volume_id": "vol-00f6f149c57ac152c"
 }
 },
 "key_name": null,
 "image_id": "ami-984189e2",
 "tenancy": "default",
 "groups": {
 "sg-eae64983": "default",
 "sg-8a1d78e3": "public"
 },
 "public_dns_name": "",
 "state_code": 16,
 "tags": {
 "color": "blue",
 "resource_group_name": "aws",
 "shape": "oval",
 "name": "demo-day"
 },
 "placement": "us-east-1c",
 "ami_launch_index": "0",
 "dns_name": "",
 "region": "us-east-1",
 "launch_time": "2018-10-01T17:19:23.000Z",
 "instance_type": "m1.small",
 "architecture": "x86_64",
 "hypervisor": "xen"
}

Dummy Sample Output

{
 "hypervisor": "xen"
 "failed": false,
 "changed": true,
 "hosts": [
 dummy-8c8b6b-0,
 dummy-8c8b6b-1,
 dummy-8c8b6b-2,
],
 "resource_type": "dummy_res",
 "dummy_file": "/tmp/dummy.hosts"
}

Libvirt Sample Output

{
 "ip": "192.168.122.119",
 "name": "centos71-872d6a_0"
}

openstack sample output

{
 "OS-DCF:diskConfig": "MANUAL",
 "OS-EXT-AZ:availability_zone": "nova",
 "OS-EXT-STS:power_state": 1,
 "OS-EXT-STS:task_state": null,
 "OS-EXT-STS:vm_state": "active",
 "OS-SRV-USG:launched_at": "2018-09-19T14:53:12.000000",
 "OS-SRV-USG:terminated_at": null,
 "accessIPv4": "",
 "accessIPv6": "",
 "addresses": {
 "e2e-openstack": [
 {
 "OS-EXT-IPS-MAC:mac_addr": "fa:16:3e:a1:c0:6b",
 "OS-EXT-IPS:type": "fixed",
 "addr": "",
 "version": 4
 }
]
 },
 "adminPass": "",
 "az": "nova",
 "cloud": "defaults",
 "config_drive": "",
 "created": "2018-09-19T14:46:51Z",
 "created_at": "2018-09-19T14:46:51Z",
 "disk_config": "MANUAL",
 "flavor": {
 "id": "2",
 "name": "m1.small"
 },
 "has_config_drive": false,
 "hostId": "190ddf5e439d5fa9a5e767485c44e8fdbfa206166eaf5aa6ed100fc0",
 "host_id": "190ddf5e439d5fa9a5e767485c44e8fdbfa206166eaf5aa6ed100fc0",
 "id": "83e2d9d3-7823-45f3-8a58-52452acddaa8",
 "image": {
 "id": "11b72b11-59e8-4919-a918-265c1566bd45",
 "name": "CentOS-7-x86_64-GenericCloud-1612"
 },
 "interface_ip": "",
 "key_name": "ci-factory",
 "launched_at": "2018-09-19T14:53:12.000000",
 "location": {
 "cloud": "defaults",
 "project": {
 "domain_id": null,
 "domain_name": null,
 "id": "f53391f4d50643f283af5d59fc450e09",
 "name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"
 },
 "region_name": "",
 "zone": "nova"
 },
 "metadata": {},
 "name": "596-master-d7b60a-1",
 "networks": {},
 "os-extended-volumes:volumes_attached": [],
 "power_state": 1,
 "private_v4": "",
 "progress": 0,
 "project_id": "f53391f4d50643f283af5d59fc450e09",
 "properties": {
 "OS-DCF:diskConfig": "MANUAL",
 "OS-EXT-AZ:availability_zone": "nova",
 "OS-EXT-STS:power_state": 1,
 "OS-EXT-STS:task_state": null,
 "OS-EXT-STS:vm_state": "active",
 "OS-SRV-USG:launched_at": "2018-09-19T14:53:12.000000",
 "OS-SRV-USG:terminated_at": null,
 "os-extended-volumes:volumes_attached": []
 },
 "public_v4": "",
 "public_v6": "",
 "region": "",
 "security_groups": [
 {
 "description": "Default security group",
 "id": "f48c6b12-497b-4301-97f5-0c8749815089",
 "location": {
 "cloud": "defaults",
 "project": {
 "domain_id": null,
 "domain_name": null,
 "id": "f53391f4d50643f283af5d59fc450e09",
 "name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"
 },
 "region_name": "",
 "zone": null
 },
 "name": "default",
 "project_id": "f53391f4d50643f283af5d59fc450e09",
 "properties": {},
 "security_group_rules": [
 {
 "direction": "ingress",
 "ethertype": "IPv4",
 "group": {},
 "id": "1b315474-5730-483e-a9b7-712530c17b19",
 "location": {
 "cloud": "defaults",
 "project": {
 "domain_id": null,
 "domain_name": null,
 "id": "f53391f4d50643f283af5d59fc450e09",
 "name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"
 },
 "region_name": "",
 "zone": null
 },
 "port_range_max": 22,
 "port_range_min": 22,
 "project_id": "",
 "properties": {
 "group": {}
 },
 "protocol": "tcp",
 "remote_group_id": null,
 "remote_ip_prefix": "0.0.0.0/0",
 "security_group_id": "f48c6b12-497b-4301-97f5-0c8749815089",
 "tenant_id": ""
 },
 {
 "direction": "ingress",
 "ethertype": "IPv4",
 "group": {
 "name": "default",
 "tenant_id": "f53391f4d50643f283af5d59fc450e09"
 },
 "id": "2e45cfff-370d-460f-a88f-f3042b4a25d8",
 "location": {
 "cloud": "defaults",
 "project": {
 "domain_id": null,
 "domain_name": null,
 "id": "f53391f4d50643f283af5d59fc450e09",
 "name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"
 },
 "region_name": "",
 "zone": null
 },
 "port_range_max": null,
 "port_range_min": null,
 "project_id": "",
 "properties": {
 "group": {
 "name": "default",
 "tenant_id": "f53391f4d50643f283af5d59fc450e09"
 }
 },
 "protocol": null,
 "remote_group_id": null,
 "remote_ip_prefix": null,
 "security_group_id": "f48c6b12-497b-4301-97f5-0c8749815089",
 "tenant_id": ""
 },
 {
 "direction": "ingress",
 "ethertype": "IPv4",
 "group": {},
 "id": "33078914-a857-45c4-8ed2-d4ba9d7b41be",
 "location": {
 "cloud": "defaults",
 "project": {
 "domain_id": null,
 "domain_name": null,
 "id": "f53391f4d50643f283af5d59fc450e09",
 "name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"
 },
 "region_name": "",
 "zone": null
 },
 "port_range_max": null,
 "port_range_min": null,
 "project_id": "",
 "properties": {
 "group": {}
 },
 "protocol": "icmp",
 "remote_group_id": null,
 "remote_ip_prefix": "0.0.0.0/0",
 "security_group_id": "f48c6b12-497b-4301-97f5-0c8749815089",
 "tenant_id": ""
 },
 {
 "direction": "ingress",
 "ethertype": "IPv4",
 "group": {
 "name": "default",
 "tenant_id": "f53391f4d50643f283af5d59fc450e09"
 },
 "id": "b801bf97-f470-476b-9d63-b692de45ec67",
 "location": {
 "cloud": "defaults",
 "project": {
 "domain_id": null,
 "domain_name": null,
 "id": "f53391f4d50643f283af5d59fc450e09",
 "name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"
 },
 "region_name": "",
 "zone": null
 },
 "port_range_max": null,
 "port_range_min": null,
 "project_id": "",
 "properties": {
 "group": {
 "name": "default",
 "tenant_id": "f53391f4d50643f283af5d59fc450e09"
 }
 },
 "protocol": null,
 "remote_group_id": null,
 "remote_ip_prefix": null,
 "security_group_id": "f48c6b12-497b-4301-97f5-0c8749815089",
 "tenant_id": ""
 }
],
 "tenant_id": "f53391f4d50643f283af5d59fc450e09"
 }
],
 "status": "ACTIVE",
 "task_state": null,
 "tenant_id": "f53391f4d50643f283af5d59fc450e09",
 "terminated_at": null,
 "updated": "2018-09-19T14:53:12Z",
 "user_id": "e32798f55da74cffa90d629e50939582",
 "vm_state": "active",
 "volumes": []
}

Developer Information

The following information may be useful for those wishing to extend LinchPin.

	Python API Reference

	Developing LinchPin

See also

	User Mailing List [https://www.redhat.com/mailman/listinfo/linchpin]
	Subscribe and participate. A great place for Q&A

	LinchPin on Github [https://github.com/CentOS-PaaS-SIG/linchpin]
	Code Contributions and Latest Software

	webchat.freenode.net [http://webchat.freenode.net?channels=linchpin]
	#linchpin IRC chat channel

	LinchPin on PyPi [https://pypi.org/project/linchpin/]
	Latest Release of LinchPin

Python API Reference

This page contains the list of project’s modules

	Linchpin API and Context Modules

	LinchPin Command-Line API

	LinchPin Command Line Shell implementation

	LinchPin Hooks API

	LinchPin Extra Modules

Linchpin API and Context Modules

The linchpin module provides the base API for managing LinchPin, Ansible,
and other useful aspects for provisioning.

	
class linchpin.LinchpinAPI(ctx)

	
	
bind_to_hook_state(callback)

	Function used by LinchpinHooksclass to add callbacks

	Parameters

	callback – callback function

	
do_action(provision_data, action='up', run_id=None, tx_id=None)

	This function takes provision_data, and executes the given
action for each target within the provision_data disctionary.

	Parameters

	provision_data – PinFile data as a dictionary, with

target information

	Parameters

	
	action – Action taken (up, destroy, etc). (Default: up)

	run_id – Provided run_id to duplicate/destroy (Default: None)

	tx_id – Provided tx_id to duplicate/destroy (Default: None)

	
do_validation(provision_data, old_schema=False)

	This function takes provision_data, and attempts to validate the
topologies for that data

	Parameters

	provision_data – PinFile data as a dictionary, with

target information

	
generate_inventory(resource_data, layout, inv_format='cfg', topology_data={}, config_data={})

	

	
get_cfg(section=None, key=None, default=None)

	Get cfgs value(s) by section and/or key, or the whole cfgs object

	Parameters

	
	section – section from ini-style config file

	key – key to get from config file, within section

	default – default value to return if nothing is found.

	
get_evar(key=None, default=None)

	Get the current evars (extra_vars)

	Parameters

	
	key – key to use

	default – default value to return if nothing is found

(default: None)

	
get_pf_data_from_rundb(targets, run_id=None, tx_id=None)

	This function takes the action and provision_data, returns the
pinfile data

	Parameters

	
	targets – A list of targets for which to get the data

	targets – Tuple of target(s) for which to gather data.

	run_id – run_id associated with target (Default: None)

	tx_id – tx_id for which to gather data (Default: None)

	
get_run_data(tx_id, fields, targets=())

	Returns the RunDB for data from a specified field given a tx_id.
The fields consist of the major sections in the RunDB (target
view only). Those fields are action, start, end, inputs, outputs,
uhash, and rc.

	Parameters

	
	tx_id – tx_id to search

	fields – Tuple of fields to retrieve for each record requested.

	targets – Tuple of targets to search from within the tx_ids

	
property hook_state

	getter function for hook_state property of the API object

	
lp_journal(view='target', targets=[], fields=None, count=1, tx_ids=None)

	

	
prepare_rundb(target, action, run_id=None, tx_id=None)

	

	
run_hooks(state, action)

	

	
run_target(target, resources, action, run_id=None)

	

	
set_cfg(section, key, value)

	Set a value in cfgs. Does not persist into a file,
only during the current execution.

	Parameters

	
	section – section within ini-style config file

	key – key to use

	value – value to set into section within config file

	
set_evar(key, value)

	Set a value into evars (extra_vars). Does not persist into a file,
only during the current execution.

	Parameters

	
	key – key to use

	value – value to set into evars

	
setup_pbar()

	

	
setup_rundb()

	Configures the run database parameters, sets them into extra_vars

	
ssh(target)

	

	
update_rundb(rundb_id, target, provision_data)

	

	
write_results_to_rundb(results, action)

	

	
linchpin.progress_monitor(disable_pbar, target)

	

	
linchpin.tqdm_or_mock(disable, *args, **kwargs)

	

	
class linchpin.context.LinchpinContext

	LinchpinContext object, which will be used to manage the cli,
and load the configuration file.

	
get_cfg(section=None, key=None, default=None)

	Get cfgs value(s) by section and/or key, or the whole cfgs object

	Parameters

	
	section – section from ini-style config file

	key – key to get from config file, within section

	default – default value to return if nothing is found.

Does not apply if section is not provided.

	
get_env_vars(key=None, default=None)

	Get the current env_vars

	Parameters

	
	key – key to use

	default – default value to return if nothing is found

(default: None)

	
get_evar(key=None, default=None)

	Get the current evars (extra_vars)

	Parameters

	
	key – key to use

	default – default value to return if nothing is found

(default: None)

	
load_config(workspace=None, config_path=None, search_path=None)

	Update self.cfgs from the linchpin configuration file (linchpin.conf).

The following paths are used to find the config file.
The search path defaults to the first-found order:

* /etc/linchpin.conf
* /linchpin/library/path/linchpin.conf
* <workspace>/linchpin.conf

An alternate search_path can be passed.

	Parameters

	search_path – A list of paths to search a linchpin config

(default: None)

	
load_global_evars()

	Instantiate the evars variable, then load the variables from the
‘evars’ section in linchpin.conf. This will then be passed to
invoke_linchpin, which passes them to the Ansible playbook as needed.

	
log(msg, **kwargs)

	Logs a message to a logfile

	Parameters

	
	msg – message to output to log

	level – keyword argument defining the log level

	
log_debug(msg)

	Logs a DEBUG message

	
log_info(msg)

	Logs an INFO message

	
log_state(msg)

	Logs nothing, just calls pass

Attention

state messages need to be implemented in a subclass

	
set_cfg(section, key, value)

	Set a value in cfgs. Does not persist into a file,
only during the current execution.

	Parameters

	
	section – section within ini-style config file

	key – key to use

	value – value to set into section within config file

	
set_env_vars(key, value)

	Set a value into env_vars. Does not persist into a file,
only during the current execution.

	Parameters

	
	key – key to use

	value – value to set into evars

	
set_evar(key, value)

	Set a value into evars (extra_vars). Does not persist into a file,
only during the current execution.

	Parameters

	
	key – key to use

	value – value to set into evars

	
setup_logging()

	Setup logging to the console only

Attention

Please implement this function in a subclass

	
class linchpin.ansible_runner.Options(connection, module_path, forks, become, become_method, become_user, listhosts, listtasks, listtags, syntax, remote_user, private_key_file, ssh_common_args, ssh_extra_args, sftp_extra_args, scp_extra_args, start_at_task, verbosity, check, diff, vault_password_files)

	

	
linchpin.ansible_runner.ansible_runner(playbook_path, module_path, extra_vars, vault_password_file, inventory_src='localhost', verbosity=2, console=True, env_vars=(), use_shell=False)

	Uses the Ansible API code to invoke the specified linchpin playbook
:param playbook: Which ansible playbook to run (default: ‘up’)
:param console: Whether to display the ansible console (default: True)

	
linchpin.ansible_runner.ansible_runner_24x(playbook_path, extra_vars, options, inventory_src='localhost', console=True)

	

	
linchpin.ansible_runner.ansible_runner_28x(playbook_path, extra_vars, options, inventory_src='localhost', console=True)

	

	
linchpin.ansible_runner.ansible_runner_shell(playbook_path, module_path, extra_vars, vault_password_file=None, inventory_src='localhost', verbosity=1, console=True, env_vars=(), check=False)

	

	
linchpin.ansible_runner.set_environment_vars(env_vars)

	Sets environment variables passed
: param env_vars: list of tuples

	
linchpin.ansible_runner.subprocess_runner(cmd, shell=False)

	Runs subprocess commands
param: cmd in a list
param: shell to print stdout, stderr or not

	
linchpin.ansible_runner.suppress_stdout()

	This context manager provides tooling to make Ansible’s Display class
not output anything when used

	
class linchpin.callbacks.PlaybookCallback(display=None, options=None, ansible_version=2.3)

	Playbook callback

	
v2_runner_on_failed(result, **kwargs)

	Save failed result

	
v2_runner_on_ok(result)

	Save ok result

	
class linchpin.api.Pinfile(pinfile={}, config='linchpin.conf', workspace_path=None)

	
	
destroy()

	Destroys pinfile resources constructed through the Pinfile object

returns output dictionary

	
up()

	provsions pinfile resources constructed through the Pinfile object

returns output dictionary

	
class linchpin.api.Workspace(path=None)

	
	
destroy()

	Destroys workspace resources constructed through the workspace object

returns output dictionary

	
find_pinfile()

	find_pinfile function to search pinfiles in workspace path
returns pinfile path if found

	
get_cfg(section, key)

	get_cfg gets current linchpin.conf values based on section, key

returns string

	
get_credentials_path()

	get_credentials_path function gets current credentials path

returns path to credential file

	
get_evar(key)

	get_evar function sets extra vars in current run

	Parameters

	key – string

returns value for corresponding key

	
get_flag_ignore_failed_hooks()

	get_flag_ignore_failed_hooks get current ignore_failed_hooks flag value

returns boolean

	
get_flag_no_hooks()

	get_flag_no_hooks gets current vault_encryption flag value

returns boolean

	
get_inventory(inv_format='json')

	get_inventory gets inventory of latest run

param: inv_format: string json/ini

returns dict/string

	
get_latest_run()

	get_latest_run get latest resources provisioned

returns dict

	
get_vault_encryption()

	get_vault_encryption gets current vault_encryption flag value

returns boolean

	
get_vault_pass()

	get_valut_pass get current valut_password set

returns boolean

	
get_workspace()

	get_workspace function gets current workspace path

	Parameters

	path – path to workspace directory

returns workspace path if set

	
load_data(path)

	load_data function to load from workspace path

	Parameters

	path – path to workspace directory

	
set_cfg(section, key, value)

	get_flag_ignore_failed_hooks get current ignore_failed_hooks flag value

returns boolean

	
set_credentials_path(creds_path)

	set_credentials_path function set credentials path

	Parameters

	creds_path – path to credential directory

returns True/False

	
set_evar(key, value)

	set_evar function sets extra vars in current run

	Parameters

	
	key – string

	value – string

returns key,value tuple

	
set_flag_ignore_failed_hooks(flag)

	set_flag_ignore_failed_hooks sets current ignore_failed_hooks flag value

param: flag: boolean

	
set_flag_no_hooks(flag)

	set_flag_no_hooks sets no_hooks flag

param: flag: boolean

returns boolean

	
set_vault_encryption(vault_enc)

	set_vault_encryption sets vault_encryption flag
if credentials are encrypted in vault current credentials path

param: vault_enc: boolean

returns boolean

	
set_vault_pass(vault_pass)

	set_vault_pass set current vault_pass value

param: vault_pass: string
returns boolean

	
set_workspace(path)

	set_workspace function sets workspace path

	Parameters

	path – path to workspace directory

returns workspace path if set

	
up()

	provisions workspace resources constructed through the workspace object

returns output dictionary

	
validate()

	validate function to validate loaded workspace/pinfile

LinchPin Command-Line API

The linchpin.cli module provides an API for writing a command-line interface,
the LinchPin Command Line Shell implementation being the reference implementation.

	
class linchpin.cli.LinchpinCli(ctx)

	
	
find_include(filename, ftype='topology')

	Find the included file to be acted upon.

	Parameters

	
	filename – name of file from to be loaded

	ftype – the file type to locate: topology, layout
(default: topology)

	
lp_destroy(targets=(), run_id=None, tx_id=None, env_vars=None)

	This function takes a list of targets, and performs a destructive
teardown, including undefining nodes, according to the target(s).

See also

lp_down - currently unimplemented

	Parameters

	
	targets – A tuple of targets to destroy.

	run_id – An optional run_id to use

	tx_id – An optional tx_id to use

	
lp_fetch(src, root='', fetch_type='workspace', fetch_protocol='FetchGit', fetch_ref=None, dest_ws=None, nocache=False)

	Fetch a workspace from git, http(s), or a local directory, and
generate a provided workspace

	Parameters

	
	src – The URL or URI of the remote directory

	root – Used to specify the location of the workspace
within the remote. If root is not set, the root
of the given remote will be used.

	fetch_type – Specifies which component(s) of a workspace the
user wants to fetch. Types include: topologies,
layouts, resources, hooks, workspace.
(default: workspace)

	fetch_protocol – The protocol to use to fetch the workspace.
(default: git)

	fetch_ref – Specify the git branch. Used only with git protocol
(eg. master). If not used, the default branch will
be used.

	dest_ws – Workspaces destination, the workspace will be relative
to this location.

If dest_ws is not provided and -r/–root is
provided, the basename will be the name of the
workspace within the destination. If no root is
provided, a random workspace name will be generated.
The destination can also be explicitly set by using
-w (see linchpin –help).

	nocache – If true, don’t copy from the cache dir, unless it’s
longer than the configured fetch.cache_days (1 day)
(default: False)

	
lp_init(providers=['libvirt'])

	Initializes a linchpin project. Creates the necessary directory
structure, includes PinFile, topologies and layouts for the given
provider. (Default: Dummy. Other providers not yet implemented.)

	Parameters

	providers – A list of providers for which templates

(and a target) will be provided into the workspace.
NOT YET IMPLEMENTED

	
lp_setup(providers='all')

	This function takes a list of providers, and setsup the dependencies
:param providers:

A tuple of providers to install dependencies

	
lp_up(targets=(), run_id=None, tx_id=None, inv_f='cfg', env_vars=())

	This function takes a list of targets, and provisions them according
to their topology.

	Parameters

	
	targets – A tuple of targets to provision

	run_id – An optional run_id if the task is idempotent

	tx_id – An optional tx_id if the task is idempotent

	
lp_validate(targets=(), old_schema=False)

	This function takes a list of targets, and validates their topology.

	Parameters

	targets – A tuple of targets to provision

	:param old_schema
	Denotes whether schema should be validated with the old schema
rather than the new one!/usr/bin/env python

	
property pf_data

	getter for pinfile template data

	
property pinfile

	getter function for pinfile name

	
property workspace

	getter function for context workspace

	
class linchpin.cli.context.LinchpinCliContext

	Context object, which will be used to manage the cli,
and load the configuration file

	
property inventory

	getter function for inventory

	
property inventory_folder

	getter function for inventory_folder

	
property inventory_path

	getter function for inventory_path

	
load_config(lpconfig=None)

	Update self.cfgs from the linchpin configuration file (linchpin.conf).

The following paths are used to find the config file.
The search path defaults to the first-found order:

* /etc/linchpin.conf
* /linchpin/library/path/linchpin.conf
* <workspace>/linchpin.conf

An alternate search_path can be passed.

	Parameters

	search_path – A list of paths to search a linchpin config

(default: None)

	
log(msg, **kwargs)

	Logs a message to a logfile or the console

	Parameters

	
	msg – message to log

	lvl – keyword argument defining the log level

	msg_type – keyword argument giving more flexibility.

Note

Only msg_type STATE is currently implemented.

	
log_debug(msg)

	Logs a DEBUG message

	
log_info(msg)

	Logs an INFO message

	
log_state(msg)

	Logs a message to stdout

	
property pinfile

	getter function for pinfile name

	
setup_logging()

	Setup logging to a file, console, or both. Modifying the linchpin.conf
appropriately will provide functionality.

	
property workspace

	getter function for workspace

LinchPin Command Line Shell implementation

The linchpin.shell module contains calls to implement the Command Line
Interface within linchpin. It uses the Click [http://click.pocoo.org]
command line interface composer. All calls here interface with the
LinchPin Command-Line API API.

	
class linchpin.shell.click_default_group.DefaultGroup(*args, **kwargs)

	Invokes a subcommand marked with default=True if any subcommand not
chosen.

	Parameters

	default_if_no_args – resolves to the default command if no arguments
passed.

	
command(*args, **kwargs)

	A shortcut decorator for declaring and attaching a command to
the group. This takes the same arguments as command() but
immediately registers the created command with this instance by
calling into add_command().

	
format_commands(ctx, formatter)

	Extra format methods for multi methods that adds all the commands
after the options.

	
get_command(ctx, cmd_name)

	Given a context and a command name, this returns a
Command object if it exists or returns None.

	
list_commands(ctx)

	Provide a list of available commands. Anything deprecated should
not be listed

	
parse_args(ctx, args)

	Given a context and a list of arguments this creates the parser
and parses the arguments, then modifies the context as necessary.
This is automatically invoked by make_context().

	
resolve_command(ctx, args)

	

	
set_default_command(command)

	Sets a command function as the default command.

LinchPin Hooks API

The linchpin.hooks module manages the Linchpin Hooks functionality within
LinchPin.

	
class linchpin.hooks.ActionBlockRouter(name, *args, **kwargs)

	Proxy pattern implementation for fetching actionmanagers by name

	
class linchpin.hooks.LinchpinHooks(api)

	
	
execute_hook(block_obj, target)

	

	
fetch_git_src(block)

	

	
fetch_src(block)

	

	
get_custom_action_manager(action_block)

	

	
global_hooks_block(block)

	

	
prepare_ctx_params()

	prepares few context parameters based on the current target_data
that is being set. these parameters are based topology name.

	
prepare_inv_params()

	

	
resolve_block_path(block)

	

	
run_action(state, block, tgt_data)

	

	
run_actions(state, action_blocks, tgt_data, is_global=False)

	Runs actions inside each action block of each target

	Parameters

	
	action_blocks – list of action_blocks each block constitues
to a type of hook

	tgt_data – data specific to target, which can be dict of

topology , layout, outputs, inventory
:param is_global: scope of the hook

example: action_block:
- name: do_something

type: shell
actions:

	echo ‘ this is ‘postup’ operation Hello hai how r u ?’

	
run_hooks(state, is_global=False)

	Function to run hook all hooks from Pinfile based on the state
:param state: hook state (currently, preup, postup,
predestroy, postdestroy)
:param is_global: whether the hook is global (can be applied to
multiple targets)

	
run_inventory_gen(data)

	

	
run_local_actions(state, action_blocks, tgt_data)

	

	
property rundb

	

LinchPin Extra Modules

These are modules not documented elsewhere in the LinchPin API, but may be
useful to a developer.

	
class linchpin.utils.dataparser.DataParser

	
	
load_pinfile(pinfile)

	

	
parse_json_yaml(data, ordered=True)

	parses yaml file into json object

	
process(file_w_path, data=None)

	Processes the PinFile and any data (if a template)
using Jinja2. Returns json of PinFile, topology, layout,
and hooks.

	Parameters

	
	file_w_path – Full path to the provided file to process

	data – A JSON representation of data mapped to a Jinja2 template in
file_w_path

	
render(template, context, ordered=True)

	Performs the rendering of template and context data using
Jinja2.

	Parameters

	
	template – Full path to the Jinja2 template

	context – A dictionary of variables to be rendered againt the template

	
run_script(script)

	

	
write_json(provision_data, pf_outfile)

	

	
exception linchpin.exceptions.ActionError(*args, **kwargs)

	

	
exception linchpin.exceptions.ActionManagerError(*args, **kwargs)

	

	
exception linchpin.exceptions.HookError(*args, **kwargs)

	

	
exception linchpin.exceptions.LinchpinError(*args, **kwargs)

	

	
exception linchpin.exceptions.SchemaError(*args, **kwargs)

	

	
exception linchpin.exceptions.StateError(*args, **kwargs)

	

	
exception linchpin.exceptions.TopologyError(*args, **kwargs)

	

	
exception linchpin.exceptions.ValidationError(*args, **kwargs)

	

	
class linchpin.exceptions.ValidationErrorHandler(tree=None)

	
	
messages = {0: '{0}', 1: 'document is missing', 2: "field '{field}' is required", 3: "field '{field}' could not be recognized within the schema provided", 4: "field '{0}' is required", 5: 'depends on these values: {constraint}', 6: "{0} must not be present with '{field}'", 33: "'{0}' is not a document, must be a dict", 34: 'empty values not allowed', 35: 'null value not allowed', 36: "value for field '{field}' must be of type '{constraint}'", 37: 'must be of dict type', 38: 'length of list should be {0}, it is {1}', 39: 'min length is {constraint}', 40: 'max length is {constraint}', 65: "value does not match regex '{constraint}'", 66: 'min value is {constraint}', 67: 'max value is {constraint}', 68: "unallowed value '{value}' for field '{field}'. Allowed values are: {constraint}", 69: 'unallowed values {0}', 70: 'unallowed value {value}', 71: 'unallowed values {0}', 72: 'missing members {0}', 97: "field '{field}' cannot be coerced: {0}", 98: "field '{field}' cannot be renamed: {0}", 99: 'field is read-only', 100: "default value for '{field}' cannot be set: {0}", 129: "mapping doesn't validate subschema: {0}", 130: "one or more sequence-items don't validate: {0}", 131: "one or more keys of a mapping don't validate: {0}", 132: "one or more values in a mapping don't validate: {0}", 133: "one or more sequence-items don't validate: {0}", 145: 'one or more definitions validate', 146: 'none or more than one rule validate', 147: 'no definitions validate', 148: "one or more definitions don't validate"}

	

	
class linchpin.fetch.FetchHttp(ctx, fetch_type, src, dest, cache_dir, root='', root_ws='', ref=None)

	
	
call_wget(fetch_dir=None)

	

	
fetch_files()

	

	
class linchpin.fetch.FetchGit(ctx, fetch_type, src, dest, cache_dir, root='', root_ws='', ref=None)

	
	
call_clone(fetch_dir=None)

	

	
fetch_files()

	

Developing LinchPin

This guide will walk you through the basics of contributing to LinchPin.

Topics

	Developing LinchPin

	Checking out the linchpin code

	Working on a feature or bug

	Creating a Pull Request

	Updating a Pull Request

	Merging a Pull Request

Checking out the linchpin code

You can check out the linchpin code by cloning the git repository from github.

$ git clone https://github.com/CentOS-PaaS-SIG/linchpin.git

But to submit pull requests (PR’s) you will need to fork the project on github webui first.
Then you can add a remote for that fork. This is where you will push your changes.

$ git remote add myfork git@github.com:<YOUR_GITHUB_USERNAME>/linchpin.git

Remember to replace <YOUR_GITHUB_USERNAME> with your actual github login.

Working on a feature or bug

All new work happens off the develop branch. It is good practice to make sure you have
the latest version before starting work on your changes.

$ git checkout develop
$ git pull

Now that you are in the develop branch and have the latest version you can create a new
branch to use for your changes.

$ git checkout -b <DESCRIPTIVE_BRANCH_NAME>

Replace <DESCRIPTIVE_BRANCH_NAME> with a branch name that makes sense. This name will show up
in your github fork branches.

Creating a Pull Request

After you have committed your changes and tested them locally you can push them to your github fork repo.

$ git pull --rebase origin develop
$ git push myfork <DESCRIPTIVE_BRANCH_NAME>:<DESCRIPTIVE_BRANCH_NAME>
Enumerating objects: 1014, done.
Counting objects: 100% (768/768), done.
Delta compression using up to 8 threads
Compressing objects: 100% (290/290), done.
Writing objects: 100% (634/634), 83.86 KiB | 6.99 MiB/s, done.
Total 634 (delta 462), reused 436 (delta 324)
remote: Resolving deltas: 100% (462/462), completed with 84 local objects.
remote:
remote: Create a pull request for 'devel_docs' on GitHub by visiting:
remote: https://github.com/<YOUR_GITHUB_USERNAME>/linchpin/pull/new/devel_docs
remote:
To github.com:<YOUR_GITHUB_USERNAME>/linchpin.git
 * [new branch] devel_docs -> devel_docs

The remote output explains how you can create a pull request by following the url referenced. Again,
<YOUR_GITHUB_USERNAME> will match your github username.

Once a pull request has been created the automated testing will kick off automatically. There is
upstream testing which is run on publicly accessable servers and there is downstream testing which
is run inside Red Hat. We try to do most testing upstream since this in an open source project,
but some of the providers are only available inside Red Hat.

The upstream testing is referenced from the All checks section. Downstream testing is recorded
as a comment.

If for some reason you need to kick off the testing again you can add a comment with the keyword
[test] in it. It has to be inside the square brackets in order to trigger.

Depending on your contribution status your PR may not kick off automated testing and will require
someone from the project to initiate the testing.

You can request reviewers at this point and depending on the files that have been changed github
may suggest some reviewers based on who last changed that code.

Updating a Pull Request

If changes are required for your PR then please amend to your commit and force push.
If other commits have been merged into develop since you started your PR you may need
to rebase your PR on the latest code. One reason for this is if changes to the automated
testing infrastructure have been made.

$ git add -u
$ git commit --amend
$ git pull --rebase origin develop
$ git push myfork --force <DESCRIPTIVE_BRANCH_NAME>:<DESCRIPTIVE_BRANCH_NAME>

Merging a Pull Request

When all the tests are passing and the code has been approved by the reviewers you can merge the PR.
Don’t use the merge button on github. There is a workflow that does the merge which is triggered by
the comment [merge] in it. Again, it has to be inside the square brackets in order to trigger.

The reason for this is we have containers used in the testing process which may need to be updated
depending on the code that is changed. Our workflow will promote those containers and do the merge
on github.

Depending on your contribution status you may not have permission to do a merge. In that case you
can leave a comment saying the PR is ready for merging.

FAQs

Below is a list of Frequently Asked Questions (FAQs), with answers. Feel free to submit yours in a Github issue [https://github.com/CentOS-PaaS-SIG/linchpin].

Community

LinchPin has a small, but vibrant community. Come help us while you learn a skill.

See also

	User Mailing List [https://www.redhat.com/mailman/listinfo/linchpin]
	Subscribe and participate. A great place for Q&A

	LinchPin on Github [https://github.com/CentOS-PaaS-SIG/linchpin]
	Code Contributions and Latest Software

	webchat.freenode.net [http://webchat.freenode.net?channels=linchpin]
	#linchpin IRC chat channel

	LinchPin on PyPi [https://pypi.org/project/linchpin/]
	Latest Release of LinchPin

Glossary

The following is a list of terms used throughout the LinchPin documentation.

	_async
	(boolean, default: False)

Used to enable asynchronous provisioning/teardown. Sets the Ansible async magic_var.

	async_timeout
	(int, default: 1000)

How long the resouce collection (formerly outputs_writer) process should wait

	_check_mode/check_mode
	(boolean, default: no)

This option does nothing at this time, though it may eventually be used for dry-run
functionality based upon the provider

	default_schemas_path
	(file_path, default: <lp_path>/defaults/<schemas_folder>)

default path to schemas, absolute path. Can be overridden by passing schema / schema_file.

	default_playbooks_path
	(file_path, default: <lp_path>/defaults/playbooks_folder>)

default path to playbooks location, only useful to the linchpin API and CLI

	default_layouts_path
	(file_path, default: <lp_path>/defaults/<layouts_folder>)

default path to inventory layout files

	default_topologies_path
	(file_path, default: <lp_path>/defaults/<topologies_folder>)

default path to topology files

	default_resources_path
	(file_path, default: <lp_path>/defaults/<resources_folder>, formerly: outputs)

default landing location for resources output data

	default_inventories_path
	(file_path, default: <lp_path>/defaults/<inventories_folder>)

default landing location for inventory outputs

	evars
	extra_vars
	Variables that can be passed into Ansible playbooks from external
sources. Used in linchpin via the linchpin.conf [evars] section.

	hook
	Certain scripts can be called when a particular hook has been
referenced in the PinFile. The currently available hooks are
preup, postup, predestroy, and postdestroy.

	inventory
	inventory_file
	If layout is provided, this will be the location of the resulting ansible
inventory

	inventories_folder
	A configuration entry in :docs1.5:`linchpin.conf <workspace/linchpin.conf>`
which stores the relative location where inventories are stored.

	linchpin_config
	lpconfig
	if passed on the command line with -c/--config, should be
an ini-style config file with linchpin default configurations (see
BUILT-INS below for more information)

	layout
	layout_file
	inventory_layout
	Definition for providing an Ansible (currently) static inventory file, based upon the provided
topology

	layouts_folder
	(file_path, default: layouts)

relative path to layouts

	lp_path
	base path for linchpin playbooks and python api

	output
	(boolean, default: True, previous: no_output)

Controls whether resources will be written to the resources_file

	PinFile
	pinfile
	A YAML file consisting of a topology and an optional
layout, among other options. This file is used by the
linchpin command-line, or Python API to determine what resources
are needed for the current action.

	playbooks_folder
	(file_path, default: provision)

relative path to playbooks, only useful to the linchpin API and CLI

	provider
	A set of platform actions grouped together, which is provided by an
external Ansible module. openstack would be a provider.

	provision
	up
	An action taken when resources are to be made available on a
particular provider platform. Usually corresponds with the
linchpin up command.

	resource_definitions
	In a topology, a resource_definition describes what the resources
look like when provisioned. This example shows two different
dummy_node resources, the resource named web will get 3 nodes, while
and the resource named test will get 1 resource.

resource_definitions:
 - name: "web"
 type: "dummy_node"
 count: 3
 - name: "test"
 type: "dummy_node"
 count: 1

	resource_group_type
	For each resource group, the type is defined by this value. It’s used by
the LinchPin API to determine which provider playbook to run.

	resources
	resources_file
	File with the resource outputs in a JSON formatted file. Useful for
teardown (destroy,down) actions depending on the provider.

	run_id
	run-id
	An integer identifier assigned to each task.

	The run_id can be passed to linchpin up for idempotent provisioning

	The run_id can be passed to linchpin destroy to destroy any
previously provisioned resources.

	rundb
	RunDB
	A simple json database, used to store the uhash and other
useful data, including the run_id and output data.

	schema
	JSON description of the format for the topology.

	target
	Specified in the PinFile, the target references a
topology and optional layout to be acted upon from the
command-line utility, or Python API.

	teardown
	destroy
	An action taken when resources are to be made unavailable on a
particular provider platform. Usually corresponds with the
linchpin destroy command.

	topologies_folder
	(file_path, default: topologies)

relative path to topologies

	topology
	topology_file
	A set of rules, written in YAML, that define the way the provisioned
systems should look after executing linchpin.

Generally, the topology and topology_file values are
interchangeable, except after the file has been processed.

	topology_name
	Within a topology_file, the topology_name provides a way to
identify the set of resources being acted upon.

	uhash
	uHash
	Unique-ish hash associated with resources on a provider basis. Provides
unique resource names and data if desired. The uhash must be enabled
in linchpin.conf if desired.

	workspace
	If provided, the above variables will be adjusted
and mapped according to this value. Each path will use the following
variables:

topology / topology_file = /<topologies_folder>
layout / layout_file = /<layouts_folder>
resources / resources_file = /resources_folder>
inventory / inventory_file = /<inventories_folder>

If the WORKSPACE environment variable is set, it will be used here. If it
is not, this variable can be set on the command line with -w/--workspace, and defaults
to the location of the PinFile bring provisioned.

Note

schema is not affected by this pathing

See also

	Source Code [https://github.com/CentOS-PaaS-SIG/linchpin]
	LinchPin Source Code

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 linchpin	

 	
 	
 linchpin.ansible_runner	

 	
 	
 linchpin.api	

 	
 	
 linchpin.callbacks	

 	
 	
 linchpin.cli	

 	
 	
 linchpin.cli.context	

 	
 	
 linchpin.context	

 	
 	
 linchpin.exceptions	

 	
 	
 linchpin.fetch	

 	
 	
 linchpin.hooks	

 	
 	
 linchpin.hooks.action_managers	

 	
 	
 linchpin.shell	

 	
 	
 linchpin.shell.click_default_group	

 	
 	
 linchpin.utils.dataparser	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	_async

 	
 	_check_mode/check_mode

A

 	
 	ActionBlockRouter (class in linchpin.hooks)

 	ActionError

 	ActionManagerError

 	ansible_runner() (in module linchpin.ansible_runner)

 	
 	ansible_runner_24x() (in module linchpin.ansible_runner)

 	ansible_runner_28x() (in module linchpin.ansible_runner)

 	ansible_runner_shell() (in module linchpin.ansible_runner)

 	async_timeout

B

 	
 	bind_to_hook_state() (linchpin.LinchpinAPI method)

C

 	
 	call_clone() (linchpin.fetch.FetchGit method)

 	call_wget() (linchpin.fetch.FetchHttp method)

 	
 	client_id

 	command() (linchpin.shell.click_default_group.DefaultGroup method)

D

 	
 	DataParser (class in linchpin.utils.dataparser)

 	default_inventories_path

 	default_layouts_path

 	default_playbooks_path

 	default_resources_path

 	default_schemas_path

 	
 	default_topologies_path

 	DefaultGroup (class in linchpin.shell.click_default_group)

 	destroy

 	destroy() (linchpin.api.Pinfile method)

 	(linchpin.api.Workspace method)

 	do_action() (linchpin.LinchpinAPI method)

 	do_validation() (linchpin.LinchpinAPI method)

E

 	
 	evars

 	
 	execute_hook() (linchpin.hooks.LinchpinHooks method)

 	extra_vars

F

 	
 	fetch_files() (linchpin.fetch.FetchGit method)

 	(linchpin.fetch.FetchHttp method)

 	fetch_git_src() (linchpin.hooks.LinchpinHooks method)

 	fetch_src() (linchpin.hooks.LinchpinHooks method)

 	
 	FetchGit (class in linchpin.fetch)

 	FetchHttp (class in linchpin.fetch)

 	find_include() (linchpin.cli.LinchpinCli method)

 	find_pinfile() (linchpin.api.Workspace method)

 	format_commands() (linchpin.shell.click_default_group.DefaultGroup method)

G

 	
 	generate_inventory() (linchpin.LinchpinAPI method)

 	get_cfg() (linchpin.api.Workspace method)

 	(linchpin.context.LinchpinContext method)

 	(linchpin.LinchpinAPI method)

 	get_command() (linchpin.shell.click_default_group.DefaultGroup method)

 	get_credentials_path() (linchpin.api.Workspace method)

 	get_custom_action_manager() (linchpin.hooks.LinchpinHooks method)

 	get_env_vars() (linchpin.context.LinchpinContext method)

 	get_evar() (linchpin.api.Workspace method)

 	(linchpin.context.LinchpinContext method)

 	(linchpin.LinchpinAPI method)

 	
 	get_flag_ignore_failed_hooks() (linchpin.api.Workspace method)

 	get_flag_no_hooks() (linchpin.api.Workspace method)

 	get_inventory() (linchpin.api.Workspace method)

 	get_latest_run() (linchpin.api.Workspace method)

 	get_pf_data_from_rundb() (linchpin.LinchpinAPI method)

 	get_run_data() (linchpin.LinchpinAPI method)

 	get_vault_encryption() (linchpin.api.Workspace method)

 	get_vault_pass() (linchpin.api.Workspace method)

 	get_workspace() (linchpin.api.Workspace method)

 	global_hooks_block() (linchpin.hooks.LinchpinHooks method)

H

 	
 	hook

 	
 	hook_state() (linchpin.LinchpinAPI property)

 	HookError

I

 	
 	inventories_folder

 	inventory

 	inventory() (linchpin.cli.context.LinchpinCliContext property)

 	
 	inventory_file

 	inventory_folder() (linchpin.cli.context.LinchpinCliContext property)

 	inventory_layout

 	inventory_path() (linchpin.cli.context.LinchpinCliContext property)

L

 	
 	layout

 	layout_file

 	layouts_folder

 	
 linchpin

 	module

 	
 linchpin.ansible_runner

 	module

 	
 linchpin.api

 	module

 	
 linchpin.callbacks

 	module

 	
 linchpin.cli

 	module

 	
 linchpin.cli.context

 	module

 	
 linchpin.context

 	module

 	
 linchpin.exceptions

 	module

 	
 linchpin.fetch

 	module

 	
 linchpin.hooks

 	module

 	
 linchpin.hooks.action_managers

 	module

 	
 linchpin.shell

 	module

 	
 linchpin.shell.click_default_group

 	module

 	
 linchpin.utils.dataparser

 	module

 	
 	linchpin_config

 	LinchpinAPI (class in linchpin)

 	LinchpinCli (class in linchpin.cli)

 	LinchpinCliContext (class in linchpin.cli.context)

 	LinchpinContext (class in linchpin.context)

 	LinchpinError

 	LinchpinHooks (class in linchpin.hooks)

 	list_commands() (linchpin.shell.click_default_group.DefaultGroup method)

 	load_config() (linchpin.cli.context.LinchpinCliContext method)

 	(linchpin.context.LinchpinContext method)

 	load_data() (linchpin.api.Workspace method)

 	load_global_evars() (linchpin.context.LinchpinContext method)

 	load_pinfile() (linchpin.utils.dataparser.DataParser method)

 	log() (linchpin.cli.context.LinchpinCliContext method)

 	(linchpin.context.LinchpinContext method)

 	log_debug() (linchpin.cli.context.LinchpinCliContext method)

 	(linchpin.context.LinchpinContext method)

 	log_info() (linchpin.cli.context.LinchpinCliContext method)

 	(linchpin.context.LinchpinContext method)

 	log_state() (linchpin.cli.context.LinchpinCliContext method)

 	(linchpin.context.LinchpinContext method)

 	lp_destroy() (linchpin.cli.LinchpinCli method)

 	lp_fetch() (linchpin.cli.LinchpinCli method)

 	lp_init() (linchpin.cli.LinchpinCli method)

 	lp_journal() (linchpin.LinchpinAPI method)

 	lp_path

 	lp_setup() (linchpin.cli.LinchpinCli method)

 	lp_up() (linchpin.cli.LinchpinCli method)

 	lp_validate() (linchpin.cli.LinchpinCli method)

 	lpconfig

M

 	
 	messages (linchpin.exceptions.ValidationErrorHandler attribute)

 	
 module

 	linchpin

 	linchpin.ansible_runner

 	linchpin.api

 	linchpin.callbacks

 	linchpin.cli

 	linchpin.cli.context

 	linchpin.context

 	linchpin.exceptions

 	linchpin.fetch

 	linchpin.hooks

 	linchpin.hooks.action_managers

 	linchpin.shell

 	linchpin.shell.click_default_group

 	linchpin.utils.dataparser

O

 	
 	Options (class in linchpin.ansible_runner)

 	
 	output

P

 	
 	parse_args() (linchpin.shell.click_default_group.DefaultGroup method)

 	parse_json_yaml() (linchpin.utils.dataparser.DataParser method)

 	pf_data() (linchpin.cli.LinchpinCli property)

 	PinFile

 	pinfile

 	Pinfile (class in linchpin.api)

 	pinfile() (linchpin.cli.context.LinchpinCliContext property)

 	(linchpin.cli.LinchpinCli property)

 	
 	PlaybookCallback (class in linchpin.callbacks)

 	playbooks_folder

 	prepare_ctx_params() (linchpin.hooks.LinchpinHooks method)

 	prepare_inv_params() (linchpin.hooks.LinchpinHooks method)

 	prepare_rundb() (linchpin.LinchpinAPI method)

 	process() (linchpin.utils.dataparser.DataParser method)

 	progress_monitor() (in module linchpin)

 	provider

 	provision

R

 	
 	render() (linchpin.utils.dataparser.DataParser method)

 	resolve_block_path() (linchpin.hooks.LinchpinHooks method)

 	resolve_command() (linchpin.shell.click_default_group.DefaultGroup method)

 	resource_definitions

 	resource_group_type

 	resources

 	resources_file

 	run-id

 	run_action() (linchpin.hooks.LinchpinHooks method)

 	run_actions() (linchpin.hooks.LinchpinHooks method)

 	
 	run_hooks() (linchpin.hooks.LinchpinHooks method)

 	(linchpin.LinchpinAPI method)

 	run_id

 	run_inventory_gen() (linchpin.hooks.LinchpinHooks method)

 	run_local_actions() (linchpin.hooks.LinchpinHooks method)

 	run_script() (linchpin.utils.dataparser.DataParser method)

 	run_target() (linchpin.LinchpinAPI method)

 	RunDB

 	rundb

 	rundb() (linchpin.hooks.LinchpinHooks property)

S

 	
 	schema

 	SchemaError

 	secret

 	set_cfg() (linchpin.api.Workspace method)

 	(linchpin.context.LinchpinContext method)

 	(linchpin.LinchpinAPI method)

 	set_credentials_path() (linchpin.api.Workspace method)

 	set_default_command() (linchpin.shell.click_default_group.DefaultGroup method)

 	set_env_vars() (linchpin.context.LinchpinContext method)

 	set_environment_vars() (in module linchpin.ansible_runner)

 	set_evar() (linchpin.api.Workspace method)

 	(linchpin.context.LinchpinContext method)

 	(linchpin.LinchpinAPI method)

 	
 	set_flag_ignore_failed_hooks() (linchpin.api.Workspace method)

 	set_flag_no_hooks() (linchpin.api.Workspace method)

 	set_vault_encryption() (linchpin.api.Workspace method)

 	set_vault_pass() (linchpin.api.Workspace method)

 	set_workspace() (linchpin.api.Workspace method)

 	setup_logging() (linchpin.cli.context.LinchpinCliContext method)

 	(linchpin.context.LinchpinContext method)

 	setup_pbar() (linchpin.LinchpinAPI method)

 	setup_rundb() (linchpin.LinchpinAPI method)

 	ssh() (linchpin.LinchpinAPI method)

 	StateError

 	subprocess_runner() (in module linchpin.ansible_runner)

 	subscription_id

 	suppress_stdout() (in module linchpin.ansible_runner)

T

 	
 	target

 	teardown

 	tenant

 	topologies_folder

 	
 	topology

 	topology_file

 	topology_name

 	TopologyError

 	tqdm_or_mock() (in module linchpin)

U

 	
 	uHash

 	uhash

 	up

 	
 	up() (linchpin.api.Pinfile method)

 	(linchpin.api.Workspace method)

 	update_rundb() (linchpin.LinchpinAPI method)

V

 	
 	v2_runner_on_failed() (linchpin.callbacks.PlaybookCallback method)

 	v2_runner_on_ok() (linchpin.callbacks.PlaybookCallback method)

 	
 	validate() (linchpin.api.Workspace method)

 	ValidationError

 	ValidationErrorHandler (class in linchpin.exceptions)

W

 	
 	workspace

 	Workspace (class in linchpin.api)

 	workspace() (linchpin.cli.context.LinchpinCliContext property)

 	(linchpin.cli.LinchpinCli property)

 	
 	write_json() (linchpin.utils.dataparser.DataParser method)

 	write_results_to_rundb() (linchpin.LinchpinAPI method)

Installing LinchPin on CentOS 6

Installing LinchPin on CentOS 6 is a bit of a special snowflake. Because
of the age of the distribution, and the newness of the libraries used by
LinchPin, system packages and python packages will conflict.

Note

It’s possible this document could be used to install RHEL6 packages
as well. Please consult the Red Hat documentation.

Follow this document very carefully, completing each section in order. It’s
imperative to a working LinchPin installation.

System Packages

Install the EPEL RPM.

$ sudo yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-6.noarch.rpm

Follow this up with the LinchPin dependencies. This shouldn’t differ from the
standard Installation.

$ sudo yum install python-pip python-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel libselinux-python make \
gcc redhat-rpm-config libxml2-python libxslt-python

Next install some additional dependencies used for installing LinchPin via the
python pip package manager.

$ sudo yum install gcc python-devel libxslt-devel \
python-jinja2-26 libffi-devel

Pip Packages

Because pip and setuptools from RPM are too old, update them.

Note

Using --force is required because otherwise other tools depend
on a newer setuptools

$ pip install pip setuptools --force --upgrade

So far this has been rather simple. This next part is critical. To address
AttributeError: ‘module’ object has no attribute ‘HAVE_DECL_MPZ_POWM_SEC [https://github.com/ansible/ansible/issues/276#issuecomment-54228436],
perform the following tasks in order.

$ sudo pip uninstall pycrypto
$ sudo yum install python-crypto python-paramiko

This removes the python-crypto RPM and pycrypto pip package, then puts the
older python-crypto RPM back. In a minute, we’ll update that to a newer version.

When removing the above packages, it removed a few other dependencies. Add them
back here.

$ sudo yum remove python-six python-requests python-urllib3
$ sudo pip uninstall -y urllib3
$ sudo yum install cloud-init
$ sudo pip install six requests urllib3 PyOpenSSL --force --upgrade

Installing LinchPin

Now it is time to install LinchPin.

$ sudo pip install linchpin

Alternatively install from source.

$ sudo yum install git
$ git clone git://github.com/CentOS-PaaS-SIG/linchpin.git
$ cd linchpin
$ sudo pip install .

At this point, the linchpin command should work.

$ linchpin --version
linchpin version 1.5.0

Installation Script

To make this easier, a script has been written which implements the above
steps. In can be run from the scripts directory in a linchpin git checkout.

:code1.5:`centos6_install.sh <scripts/centos6_install.sh>`

See also

Examples for all Providers

Configuration Options

Topics

	Configuration Options

	Getting the most current configuration

	Environmental Variables

	Command Line Options

	Values by Section

	General Defaults

	pkg

	default_config_path

	external_providers_path

	source

	pinfile

	module_folder

	rundb_type

	rundb_conn

	rundb_conn_type

	rundb_conn_schema

	rundb_hash

	dateformat

	default_pinfile

	Extra Vars

	_check_mode

	_async

	async_timeout

	enable_uhash

	generate_resources

	output

	layouts_folder

	topologies_folder

	roles_folder

	inventories_folder

	hooks_folder

	resources_folder

	schemas_folder

	playbooks_folder

	default_schemas_path

	default_topologies_path

	default_layouts_path

	default_inventories_path

	default_resources_path

	default_roles_path

	schema_v3

	schema_v4

	default_credentials_path

	inventory_path

	default_ssh_key_path

	libvirt_image_path

	libvirt_user

	libvirt_become

	Initialization Settings

	source

	pinfile

	Logger Settings

	enable

	file

	format

	dateformat

	level

	format

	level

	Hooks Settings

	preup

	predestroy

	postup

	postinv

	up

	destroy

	inv

	File Extensions

	resource

	inventory

	playbooks

	Playbook Settings

	up

	destroy

	down

	schema_check

	inv_gen

	test

Below is full coverage of each of the sections of the values available in :docs1.5:`linchpin.conf <workspace/linchpin.conf>`.

Getting the most current configuration

If you are installing LinchPin from a package manager (pip or RPM), the latest linchpin.conf is already included in the library.

An example :docs1.5:`linchpin.conf <workspace/linchpin.conf>` is available on Github.

For in-depth details of all the options, see the Configuration Reference document.

Environmental Variables

LinchPin allows configuration adjustments via environment variables in some cases. If these environment variables are set, they will take precedence over any settings in the configuration file.

A full listing of available environment variables, see the Configuration Reference document.

Command Line Options

Some configuration options are also present in the command line. Settings passed via the command line will override those passed through the configuration file and the environment.

The full list of options is covered in the Commands (CLI) document.

Values by Section

The configuration file is broken into sections. Each section controls a specific functionality in LinchPin.

General Defaults

The following settings are in the [DEFAULT] section of the linchpin.conf

Warning

The configurations in this section should NOT be changed unless you know what you are doing.

pkg

This defines the package name. Many components base paths and other
information from this setting.

pkg = linchpin

default_config_path

New in version 1.2.0

Where configuration files might land, such as the workspaces.conf,
or credentials. Generally used in combination with other configurations.

default_config_path = ~/.config/linchpin

external_providers_path

New in version 1.5.0

Developers can provide additional provider playbooks and schemas.
This configuration is used to set the path(s) to look for additional providers.

external_providers_path = %(default_config_path)s/linchpin-x

The following settings are in the [init] section of the linchpin.conf

source

Source path of files provided for the linchpin init command.

source = templates/

pinfile

Formal name of the PinFile. Can be changed as desired.

pinfile = PinFile

The following settings are in the [lp] section of the linchpin.conf

module_folder

Load custom ansible modules from this directory

module_folder = library

rundb_type

New in version 1.2.0

RunDB supports additional drivers, currently the only driver is
TinyRunDB, based upon tinydb.

rundb_type = TinyRunDB

rundb_conn

New in version 1.2.0

The resource path to the RunDB connection. The TinyRunDB version (default)
is a file.

Default: {{ workspace }}/.rundb/rundb.json

The configuration file has this option commented out. Uncommenting it could
enable a system-central rundb, if desired.

#rundb_conn = %(default_config_path)s/rundb/rundb-::mac::.json

rundb_conn_type

New in version 1.2.0

Set this value if the RunDB resource is anything but a file. This setting
is linked to the rundb_conn configuration.

rundb_conn_type = file

rundb_conn_schema

New in version 1.2.0

The schema used to store records in the TinyRunDb. Many other databases
will likely not use this value, but must honor the configuration item.

rundb_schema = {"action": "",
 "inputs": [],
 "outputs": [],
 "start": "",
 "end": "",
 "rc": 0,
 "uhash": ""}

rundb_hash

New in version 1.2.0

Hashing algorithm used to create the uHash.

rundb_hash = sha256

dateformat

New in version 1.2.0

The dateformat to use when writing out start and end times to the RunDB.

dateformat = %%m/%%d/%%Y %%I:%%M:%%S %%p

default_pinfile

New in version 1.2.0

The dateformat to use when writing out start and end times to the RunDB.

default_pinfile = PinFile

Extra Vars

The following settings are in the [evars] section of the linchpin.conf

LinchPin sets several extra_vars values, which are passed to the provisioning playbooks.

Note

Default paths in playbooks exist.
lp_path = <src_dir>/linchpin
determined in the load_config method of linchpin.cli.LinchpinCliContext
if either of these change, the value in linchpin/templates must also change

_check_mode

Enables the Ansible
check_mode [http://docs.ansible.com/ansible/latest/playbooks_checkmode.html],
or Dry Run functionality. Most provisioners currently DO NOT support this
option

_check_mode = False

_async

LinchPin supports the Ansible async mode [http://docs.ansible.com/ansible/latest/playbooks_async.html]
for certain Examples for all Providers. Setting async = True here enables the feature.

_async = False

async_timeout

Works in conjunction with the async setting, defaulting
the async wait time to {{ async_timeout }} in provider playbooks

async_timeout = 1000

enable_uhash

In older versions of Linchpin, the uhash value was not used. If set to true,
the unique-ish hash (uhash) will be appended to instances (for providers who
support naming) and the inventory_path.

enable_uhash = False

generate_resources

In older versions of linchpin (<v1.0.4), a resources folder exists, which
dumped the data that is now stored in the RunDB.

generate_resources = True

output

Deprecated in version 1.2.0
Removed in version 1.5.0

Horribly named variable, no longer used

output = True

layouts_folder

Used in lookup for a specific layout within a workspace. The PinFile
specifies the layout without a path, this is the relative location.

Also used in combination with default_layouts_path <conf_def_layout_path>,
which isn’t generally used.

layouts_folder = layouts

topologies_folder

Used in lookup for a specific topology within a workspace. The PinFile
specifies the topology without a path, this is the relative location.

Also used in combination with default_topologies_path<conf_def_topo_path>,
which isn’t generally used.

topologies_folder = topologies

roles_folder

New in version 1.5.0

Used in combination with default_roles_path <conf_def_roles_path> for
external provider roles

roles_folder = roles

inventories_folder

Relative location where inventories will be written. Usually combined with the
default_inventories_path, but could be relative tothe workspace.

_check_mode = False

inventories_folder = inventories

hooks_folder

Relative location within the workspace where hooks data is stored

hooks_folder = hooks

resources_folder

Deprecated in version 1.5.0

Relative location of the resources destination path. Generally combined with
the default_resource_path

resources_folder = resources

schemas_folder

Deprecated in version 1.2.0

Relative location of the schemas within the LinchPin codebase

schemas_folder = schemas

playbooks_folder

Relative location of the Ansible playbooks and roles within the LinchPin codebase

playbooks_folder = provision

default_schemas_path

Deprecated in version 1.5.0

Used to locate default schemas, usually schema_v4 or
schema_v3

default_schemas_path = {{ lp_path }}/defaults/%(schemas_folder)s

default_topologies_path

Deprecated in version 1.2.0

Default location for topologies in cases where topology or
topology_file is not set.

default_topologies_path = {{ lp_path }}/defaults/%(topologies_folder)s

default_layouts_path

Deprecated in version 1.2.0

When inventories are processed, layouts are looked up here if layout_file is not set

default_layouts_path = {{ lp_path }}/defaults/%(layouts_folder)s

default_inventories_path

Deprecated in version 1.2.0

When writing out inventories, this path is used if inventory_file is not set

default_inventories_path = {{ lp_path }}/defaults/%(inventories_folder)s

default_resources_path

Deprecated in version 1.2.0

When writing out resources files, this path is used if inventory_file is not set

default_inventories_path = {{ lp_path }}/defaults/%(inventories_folder)s

default_roles_path

When using an external provider, this path points back to some of the core
roles needed in the provider’s playbook.

default_roles_path = {{ lp_path }}/%(playbooks_folder)s/%(roles_folder)s

default_roles_path = {{ lp_path }}/%(playbooks_folder)s/%(roles_folder)s

schema_v3

Deprecated in v1.5.0

Full path to the location of the schema_v3.json file, which is
used to perform validation of the topology.

_check_mode = False

schema_v3 = %(default_schemas_path)s/schema_v3.json

schema_v4

Deprecated in v1.5.0

Full path to the location of the schema_v4.json file, which is
used to perform validation of the topology.

schema_v4 = %(default_schemas_path)s/schema_v4.json

default_credentials_path

If the --creds-path option or $CREDS_PATH environment variable are not
set, use this location to look up credentials files defined in a topology.

default_credentials_path = %(default_config_path)s

inventory_path

New in version 1.5.0

The inventory_path is used to set the value of the resulting inventory
file which is generated by LinchPin. This value is dynamically generated by
default.

Note

This should not be confused with the inventory_file which is an
input to the LinchPin ansible playbooks.

#inventory_path = {{ workspace }}/{{inventories_folder}}/happy.inventory

default_ssh_key_path

New in version 1.2.0

Used solely in the libvirt provider <prov_libvirt>. Could be used to set a
default location for ssh keys that might be passed via a cloud-config setup.

default_ssh_key_path = ~/.ssh

libvirt_image_path

Where to store the libvirt images for copying/booting instances. This can be
adjusted to a user accessible location if permissions are an issue.

Note

Ensure the libvirt_user and libvirt_become options below are also
adjusted according to proper permissions.

libvirt_image_path = /var/lib/libvirt/images/

libvirt_user

What user to use to access the libvirt services.

Note

Specifying root means that linchpin will attempt to access the
libvirt service as the root user. If the linchpin user is not root, sudo
without password must be setup.

libvirt_user = root

libvirt_become

When using root or any privileged user, this must be set to yes.

Note

If the linchpin user is not root, sudo without password must also be setup.

libvirt_become = yes

Initialization Settings

The following settings are in the [init] section of the linchpin.conf.

These settings specifically pertain to linchpin init, which stores
templates in the source code to generate a simple example workspace.

source

Location of templates stored in the source code. The structure is built to
resemble the directory structure explained in linchpin init.

source = templates/

pinfile

Formal name of the PinFile. Can be changed as desired.

pinfile = PinFile

Logger Settings

The following settings are in the [logger] section of the linchpin.conf.

Note

These settings are ONLY used for the Command Line Interface. The API
configures a console output only logger and expects the functionality to be
overwritten in subclasses.

enable

Whether logging to a file is enabled

enable = True

file

Name of the file to write the log. A relative or full path is acceptable.

file = linchpin.log

format

The format in which logs are written.
See https://docs.python.org/2/library/logging.html#logrecord-attributes
for more detail and available options.

format = %%(levelname)s %%(asctime)s %%(message)s

dateformat

How to display the date in logs.
See https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
for more detail and available options.

Note

This action was never implemented.

dateformat = %%m/%%d/%%Y %%I:%%M:%%S %%p

level

Default logging level

level = logging.DEBUG

The following settings are in the [console] section of the linchpin.conf.

Each of these settings is for logging output to the console, except for Ansible
output.

format

The format in which console output is written.
See https://docs.python.org/2/library/logging.html#logrecord-attributes
for more detail and available options.

format = %%(message)s

level

Default logging level

level = logging.INFO

Hooks Settings

The following settings are in the [states] section of the linchpin.conf.

These settings define the state names, which are useful in Linchpin Hooks.

preup

Define the name of the so called preup state. This state is set and
executed prior to the ‘up’ action being called, but after the PinFile
data is loaded.

preup = preup

predestroy

Define the name of the so called predestroy state. This state is set and
executed prior to the ‘destroy’ action being called, but after the PinFile
data is loaded.

predestroy = predestroy

postup

Define the name of the so called postup state. This state is set and
executed after to the ‘up’ action is completed, and after the postinv
state is executed.

postup = postup

postdestroy = postdestroy
~~

Define the name of the so called postdestroy state. This state is set and
executed after to the ‘destroy’ action is completed.

postdestroy = postdestroy

postinv

Define the name of the so called postinv state. This state is set and
executed after to the ‘up’ action is completed, and before the postup
state is executed. This is eventually going to be the inventory generation
hook.

postinv = inventory

The following settings are in the [hookstates] section of the linchpin.conf.

These settings define the ‘STATES’ each action uses in Linchpin Hooks.

up

For the ‘up’ action, types of hook states are available for execution

up = pre,post,inv

destroy

For the ‘destroy’ action, types of hook states are available for execution

destroy = pre,post

inv

New in version 1.2.0

For the inventory generation, which only happens on an ‘up’ state.

Note

The postinv state currently doesn’t do anything. In the future,
it will provide a way to generate inventories besides the standard Ansible
static inventory.

inv = post

File Extensions

The following settings are in the [extensions] section of the linchpin.conf.

These settings define the file extensions certain files have..

resource

Deprecated in version 1.2.0

Removed in version 1.5.0

When generating resource output files, append this extension

resource = .output

inventory

When generating Ansible static inventory files, append this extension

inventory = .inventory

playbooks

New in version 1.5.0

Since playbooks fundamentially changed between v1.2.0 and v1.5.0, this
option was added for looking up a provider playbook. It’s unlikely this
value will change.

playbooks = .yml

Playbook Settings

The following settings are in the [playbooks] section of the linchpin.conf.

Note

The entirety of this section is removed in version 1.5.0+.
The redesign of the LinchPin API now calls individual playbooks based
upon the resource_group_type value.

up

Removed in version 1.5.0

Name of the playbook associated with the ‘up’ (provision) action

up = site.yml

destroy

Removed in version 1.5.0

Name of the playbook associated with the ‘destroy’ (teardown) action

destroy = site.yml

down

Removed in version 1.5.0

Name of the playbook associated with the ‘down’ (halt) action

Note

This action has not been implemented.

down = site.yml

schema_check

Removed in version 1.5.0

Name of the playbook associated with the ‘schema_check’ action.

Note

This action was never implemented.

schema_check = schemacheck.yml

inv_gen

Removed in version 1.5.0

Name of the playbook associated with the ‘inv_gen’ action.

Note

This action was never implemented.

inv_gen = invgen.yml

test

Removed in version 1.5.0

Name of the playbook associated with the ‘test’ action.

Note

This action was never implemented.

test = test.yml

See also

	User Mailing List [https://www.redhat.com/mailman/listinfo/linchpin]
	Subscribe and participate. A great place for Q&A

	LinchPin on Github [https://github.com/CentOS-PaaS-SIG/linchpin]
	Code Contributions and Latest Software

	webchat.freenode.net [http://webchat.freenode.net?channels=linchpin]
	#linchpin IRC chat channel

	LinchPin on PyPi [https://pypi.org/project/linchpin/]
	Latest Release of LinchPin

 Some Examples for all Providers require authentication to acquire
managing_resources. LinchPin provides tools for these providers to
authenticate. The tools are called credentials.

Credentials

Credentials come in many forms. LinchPin wants to let the user control how the
credentials are formatted. In this way, LinchPin supports the standard
formatting and options for a provider. The only constraints that exist are how
to tell LinchPin which credentials to use, and where they credentials data
resides. In every case, LinchPin tries to use the data similarly to the way
the provider might.

One method to provide AWS credentials that can be loaded by LinchPin is to use
the INI format that the AWS CLI tool [https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html]
uses.

Credentials File

An example credentials file may look like this for aws.

$ cat aws.key
[default]
aws_access_key_id=ARYA4IS3THE3NO7FACEB
aws_secret_access_key=0Hy3x899u93G3xXRkeZK444MITtfl668Bobbygls

[herlo_aws1_herlo]
aws_access_key_id=JON6SNOW8HAS7A3WOLF8
aws_secret_access_key=Te4cUl24FtBELL4blowSx9odd0eFp2Aq30+7tHx9

See also

Examples for all Providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first
is which credentials to use. The second is where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are
described by specifying the file, then the profile. As shown above, the
filename is ‘aws.key’. The user could pick either profile in that file.

topology_name: ec2-new
resource_groups:
 - resource_group_name: "aws"
 resource_group_type: "aws"
 resource_definitions:
 - name: demo-day
 flavor: m1.small
 role: aws_ec2
 region: us-east-1
 image: ami-984189e2
 count: 1
 credentials:
 filename: aws.key
 profile: default

The important part in the above topology is the credentials section. Adding
credentials like this will look up, and use the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is
~/.config/linchpin.

Hint

The default_credentials_path value uses the interpolated
:dirs1.5:`default_config_path <workspace/linchpin.conf#L22>` value, and
can be overridden in the :docs1.5:`linchpin.conf`.

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up aws-ec2-new

Note

The aws.key file could be placed in the
default_credentials_path. In that case passing
--creds-path would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up aws-ec2-new

Developing Your Own LinchPin Roles

LinchPin currently supports a large number of providers, but we cannot guarantee that we can support all of them. Often, a team or organization requesting the role can provide a better test infrastructure than the LinchPin team. Because of this, LinchPin supports pulling roles from Ansible Galaxy.

Getting Started

LinchPin uses molecule [https://molecule.readthedocs.io/en/stable/] to test roles. The testing infrastructure is based on Red Hat’s Open Ansible Systems Integration Solutions (OASIS) guidelines. To initialize an OASIS role, first clone the OASIS roles meta skeleton. Then initialize the role using ansible galaxy

$ git clone git@github.com:oasis-roles/meta_skeleton.git
$ ansible-galaxy init --role-skeleton=meta_skeleton $YOUR_ROLE_NAME

You can also initialize the role with molecule

$ git clone git@github.com:oasis-roles/meta_skeleton.git
$ molecule init role --role-name $YOUR_ROLE_NAME --template meta_skeleton

Where do the roles go?

Push your role to GitHub. Then import it into Ansible Galaxy. The role will be called <your github username>.<github repo name>.

Inputs

LinchPin passes a few variables to a role, which are described in more detail below

state

The state variable should be either present or absent, corresponding with linchpin up or linchpin destroy.

resources

The resources variable corresponds with a single `resource group`_ in a PinFile.

Schema

The first file required for use with linchpin is a schema.json. The schema validates each resource definition. LinchPin uses cerberus [https://docs.python-cerberus.org/en/stable/] for validation. This is an example of a schema:

{
 "res_defs": {
 "type": "list",
 "schema": {
 "type": "dict",
 "schema": {
 "role": {
 "type": "string",
 "required": true,
 "allowed": ["dummy_node"]
 },
 "name": { "type": "string", "required": true },
 "domain": { "type": "string", "required": false },
 "count": { "type": "integer", "required": false }
 }
 }
 }
}

This resource definition would be valid under the schema:

- name: "master-node"
 role: "dummy_node"
 count: 3

The following one, however, would not. Notice how “count” is a string here. To learn more about cerberus, visit the link above.

- name: "master-node"
 role: "dummy_node"
 count: "3"

Inventory

The second file required by linchpin is an inventory.py. This file allows LinchPin to generate inventories such as the one below. To read more about inventories, visit the page on layouts.

In order to pass data from your role to LinchPin for inventory generation, first register the data returned by your provisioning task. Then append that to the topology outputs variable. topology outputs is a variable that linchpin uses to collect data from each resource definition. The registered output must also be appended with two variables: The resource group name and the role. This helps LinchPin determine how to generate the inventory. LinchPin has a filter called add_res_data() to make this step easy. Below is an example from LinchPin’s AWS role in which the data is collected from the provisioning task and assigned to topology_outputs.

- name: "Provisioning AWS_EC2 Resource"
 ec2:
 aws_access_key: "{{ auth_var['aws_access_key_id'] }}"
 aws_secret_key: "{{ auth_var['aws_secret_access_key'] }}"
 key_name: "{{ res_def['keypair'] }}"
 instance_type: "{{ res_def['flavor'] }}"
 image: "{{ res_def['image'] }}"
 region: "{{ res_def['region'] }}"
 wait: yes
 wait_timeout: "{{ res_def['wait_timeout'] }}"
 group: "{{ res_def['security_group'] }}"
 count: "{{ res_def['count'] }}"
 vpc_subnet_id: "{{ res_def['vpc_subnet_id'] }}"
 assign_public_ip: "{{ res_def['assign_public_ip'] }}"
 instance_tags: "{{ instance_tags }}"
 register: res_def_output

- name: "Add type to resource"
 set_fact:
 topology_outputs: "{{ topology_outputs }} + {{ res_def_output | add_res_data(res_grp_name, res_def['role']) }}"

Note

Be sure to APPEND the data! If you simply assign the output to topology_outputs,
you will overwrite the results of all previous resource definitions.

:

The inventory script should contain a class called Inventory that inherits from LinchPin’s InventoryFilter class. Children of this class must contain a method called get_host_data() that takes two arguments: the provisioned resources and the configs. It returns a dict whose keys are hostnames for the provisioned resources and whose values are a dict of key/value pairs representing data described in the cfgs and layout. Below is an example get_host_data() method, also from LinchPin’s built-in AWS role

def get_host_data(self, res, cfgs):
 """
 Returns a dict of hostnames or IP addresses for use in an Ansible
 inventory file, based on available data. Only a single hostname or IP
 address will be returned per instance, so as to avoid duplicate runs of
 Ansible on the same host via the generated inventory file.
 Each hostname contains mappings of any variable that was defined in the
 cfgs section of the PinFile (e.g. __IP__) to the value in the field that
 corresponds with that variable in the cfgs.
 If an instance has a public IP attached, its hostname in DNS will be
 returned if available, and if not the public IP address will be used.
 For instances which have a private IP address for VPC use cases, the
 private IP address will be returned since private EC2 hostnames (e.g.
 ip-10-0-0-1.ec2.internal) will not typically be resolvable outside of
 AWS. For instances with both a public and private IP address, the
 public address is always returned instead of the private address.
 :param topo:
 linchpin AWS EC2 resource data
 :param cfgs:
 map of config options from PinFile
 """

 host_data = OrderedDict()
 if res['resource_group'] != 'aws' or res['role'] != 'aws_ec2':
 return host_data
 var_data = cfgs.get('aws', {})
 if var_data is None:
 var_data = {}
 for instance in res['instances']:
 host = self.get_hostname(instance, var_data,
 self.DEFAULT_HOSTNAMES)
 hostname_var = host[0]
 hostname = host[1]
 if '__IP__' not in list(var_data.keys()):
 var_data['__IP__'] = hostname_var
 host_data[hostname] = {}
 self.set_config_values(host_data[hostname], instance, var_data)
 return host_data

There are a few functions and variables here which may not be familiar. The first is the get_hostname() method. Hosts in LinchPin inventories list a hostname and all of the corresponding variables. To determine the hostname, the get_hostname() method takes the data for the instance, the cfgs data, and a list of default hostname variables. For AWS, these variables are: [‘public_dns_name’, ‘public_ip’, ‘private_ip’]. If __IP__ is not listed in cfgs, LinchPin will search for each of the default hostnames. When one is encountered, it returns a tuple with the hostname variable and the hostname itself.

The second function which may not be familiar is the set_config_values() function. This function takes the dict corresponding with a given host (generally empty at this point), the provisioning data for that host, and the variable data for the resource group (from cfgs) an populates the dict with the corresponding values.

Testing

LinchPin’s built-in roles take advantage of the molecule [https://molecule.readthedocs.io/en/stable/] test framework, and we recommend that you do the same. These are the tests which we run on our roles

yamllint

yamllint is a linter to check syntax and do basic style enforcement.

ansible-lint

Ansible-lint

testinfra

Testinfra is a testing framework used to verify the state of your servers after provisioning.

Code example should probably go here

 The linchpin CLI is used to perform tasks related to managing resources. For detail about a specific command, see Commands (CLI).

Getting Help

Getting help from the command line is very simple. Running either linchpin
or linchpin --help will yield the command line help page.

$ linchpin --help
Usage: linchpin [OPTIONS] COMMAND [ARGS]...

 linchpin: hybrid cloud orchestration

Options:
 -c, --config PATH Path to config file
 -p, --pinfile PINFILE Use a name for the PinFile different from
 the configuration.
 -d, --template-data TEMPLATE_DATA
 Template data passed to PinFile template
 -o, --output-pinfile OUTPUT_PINFILE
 Write out PinFile to provided location
 -w, --workspace PATH Use the specified workspace. Also works if
 the familiar Jenkins WORKSPACE environment
 variable is set
 -v, --verbose Enable verbose output
 --version Prints the version and exits
 --creds-path PATH Use the specified credentials path. Also
 works if CREDS_PATH environment variable is
 set
 -h, --help Show this message and exit.

Commands:
 init Initializes a linchpin project.
 up Provisions nodes from the given target(s) in...
 destroy Destroys nodes from the given target(s) in...
 fetch Fetches a specified linchpin workspace or...
 journal Display information stored in Run Database...

For subcommands, like linchpin up, passing the --help or -h option produces help related to the provided subcommand.

$ linchpin up -h
Usage: linchpin up [OPTIONS] TARGETS

 Provisions nodes from the given target(s) in the given PinFile.

 targets: Provision ONLY the listed target(s). If omitted, ALL targets
 in the appropriate PinFile will be provisioned.

 run-id: Use the data from the provided run_id value

Options:
 -r, --run-id run_id Idempotently provision using `run-id` data
 -h, --help Show this message and exit.

As can easily be seen, linchpin up has additional arguments and options.

Basic Usage

The most basic usage of linchpin might be to perform an up action. This simple command assumes a PinFile in the workspace (current directory by default), with one target dummy.

$ linchpin up
Action 'up' on Target 'dummy' is complete

Target Run ID uHash Exit Code

dummy 75 79b9 0

Upon completion, the systems defined in the dummy target will be provisioned. An equally basic usage of linchpin is the destroy action. This command is peformed using the same PinFile and target.

$ linchpin destroy
Action 'destroy' on Target 'dummy' is complete

Target Run ID uHash Exit Code

dummy 76 79b9 0

Upon completion, the systems which were provisioned, are destroyed (or torn down).

Preview Feature:

linchpin up and destroy includes –use-shell parameter which makes linchpin run as a subprocess rather than ansible api call
usefull when we would like to overwrite environment varibles

$ linchpin -vvvv up --use-shell --env-vars TESTENV testenv value

Options and Arguments

The most common argument available in linchpin is the TARGET. Generally, the PinFile will have many targets available, but only one or two will be requested.

$ linchpin up dummy-new libvirt-new
Action 'up' on Target 'dummy' is complete
Action 'up' on Target 'libvirt' is complete

Target Run ID uHash Exit Code

dummy 77 73b1 0
libvirt 39 dc2c 0

In some cases, you may wish to use a different PinFile.

$ linchpin -p PinFile.json up
Action 'up' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 29 c70a 0

As you can see, this PinFile had a target called dummy-new, and it was the only target listed.

Other common options include:

	--verbose (-v) to get more output

	--config (-c) to specify an alternate configuration file

	--workspace (-w) to specify an alternate workspace

Combining Options

The linchpin command also allows combinining of general options with subcommand options. A good example of these might be to use the verbose (-v) option. This is very helpful in both the up and destroy subcommands.

$ linchpin -v up dummy-new -r 72
using data from run_id: 72
rundb_id: 73
uhash: a48d
calling: preup
hook preup initiated

PLAY [schema check and Pre Provisioning Activities on topology_file] ********

TASK [Gathering Facts] **
ok: [localhost]

TASK [common : use linchpin_config if provided] *****************************

What can be immediately observed, is that the -v option provides more verbose output of a particular task. This can be useful for troubleshooiting or giving more detail about a specitic task. The -v option is placed before the subcommand. The -r option, since it applies directly to the up subcommand, it is placed afterward. Investigating the linchpin -help and linchpin up --help can help differentiate if there’s confusion.

Common Usage

Verbose Output

$ linchpin -v up dummy-new

Specify an Alternate PinFile

$ linchpin -vp Pinfile.alt up

Specify an Alternate Workspace

$ export WORKSPACE=/tmp/my_workspace
$ linchpin up libvirt

or

$ linchpin -vw /path/to/workspace destroy openshift

Provide Credentials

$ export CREDS_PATH=/tmp/my_workspace
$ linchpin -v up libvirt

or

$ linchpin -v --creds-path /credentials/path up openstack

Note

The value provided to the --creds-path option is a directory,
NOT a file. This is generally due to the topology containing the
filename where the credentials are stored.

 With LinchPin, resources are king. Defining, managing, and generating outputs are all done using a declarative syntax. Resources are managed via the PinFile. The PinFile can hold two additional files, the topology, and layout. Linchpin also supports Linchpin Hooks.

Topology

The topology is declarative, written in YAML or JSON (v1.5+), and defines how the provisioned systems should look after executing the linchpin up command. A simple dummy topology is shown here.

topology_name: "dummy_cluster" # topology name
resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 - name: "web"
 role: "dummy_node"
 count: 1

This topology describes a single dummy system that will be provisioned when linchpin up is executed. Once provisioned, the resources outputs are stored for reference and later lookup. Additional topology examples can be found in :dirs1.5:`the source code <workspace/topologies>`.

Inventory Layout

An inventory_layout (or layout) is written in YAML or JSON (v1.5+), and defines how the provisioned resources should look in an Ansible static inventory file. The inventory is generated from the resources provisioned by the topology and the layout data. A layout is shown here.

inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 example-node:
 count: 1
 host_groups:
 - example

The above YAML allows for interpolation of the ip address, or hostname as a component of a generated inventory. A host group called example will be added to the Ansible static inventory. The all group always exists, and includes all provisioned hosts.

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

Note

A keen observer might notice the filename and hostname are appended with -0446. This value is called the uhash or unique-ish hash. Most providers allow for unique identifiers to be assigned automatically to each hostname as well as the inventory name. This provides a flexible way to repeat the process, but manage multiple resource sets at the same time.

Advanced layout examples can be found by reading ra_inventory_layouts.

Note

Additional layout examples can be found in :dirs1.5:`the source code <workspace/layouts>`.

PinFile

A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a resource for provisioning. An example Pinfile is shown.

Example 1
dummy_cluster:
 topology: dummy-topology.yml
 layout: dummy-layout.yml

Example 2
dummy-topo:
 topology:
 topology_name: "dummy_cluster" # topology name
 resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 - name: "{{ distro | default('') }}web"
 role: "dummy_node"
 count: 3
 - name: "{{ distro | default('') }}test"
 role: "dummy_node"
 count: 1
 layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 example-node:
 count: 3
 host_groups:
 - example
 test-node:
 count: 1
 host_groups:
 - test

The PinFile collects the given topology and layout into one place. Many targets can be referenced in a single PinFile.

To use a PinFile with an Ansible Galaxy role, simply provide the role name as the resource_group_type. An example is shown below.

dummy-new:
 topology:
 topology_name: "dummy_cluster" # topology name
 resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "14rcole.ansible_role_lp_dummy"
 resource_definitions:
 - name: "{{ distro | default('') }}web"
 role: "dummy_node"
 count: 3
 - name: "{{ distro | default('') }}test"
 role: "dummy_node"
 count: 1

More detail about the PinFile can be found in the PinFiles document.

Additional PinFile examples can be found in :dirs1.5:`the source code <workspace>`

Topology Incompatibilities

While writing the new API updates, some inconsistencies were discovered in
the beaker, and openshift topologies. These topologies did not contain the
resource_definitions section. This inconsistency affected the way
the LinchPin API processed the schema, and in turn, validated the data to
be acted upon.

The purpose of the rewrite was to enable Dynamic inputs, and topology templating.
Part of which meant having a consistent, standardized topology. The
resource_definitions section was being validated against the new schema.json
found in each provider’s roles/files.

The API was rewritten in such a way, that only dictionaries were passed to the
do_action method. The linchpin shell and cli packages converted input from
YAML, JSON, Templating, and Scripts into the provision_data dictionary. Once
converted, validation happened, and the API called the appropriate ansible
playbook for the particular provider.

This enabled the linchpin API to call a playbook named for the resource_group_type
(eg. openstack), which contained the necessary items to provision using Ansible.

Because the openshift and beaker topologies didn’t contain the needed section,
they were updated to the newer structure.

Updated Beaker Topology

topology_name: "bkr-new"
resource_groups:
 - resource_group_name: "bkr-new"
 resource_group_type: beaker
 resource_definitions:
 - role: bkr_server
 whiteboard: Provisioned with linchpin
 job_group: ci-ops-central
 recipesets:
 - distro: RHEL-6.5
 arch: x86_64
 hostrequires:
 - tag: processors
 op: ">="
 value: 4
 - tag: device
 op: "="
 type: "network"
 count: 1
 - role: bkr_server
 whiteboard: Provisioned with linchpin
 job_group: ci-ops-central
 recipesets:
 - distro: RHEL-6.5
 arch: x86_64
 hostrequires:
 - tag: processors
 op: ">="
 value: 1
 count: 1

Note

Due to the change, the beaker playbooks were improved. Previously, multiple
data sets could not be submitted at the same time. However, with the new
resource_definitions section in place, each set of resources was provisioned
at the same time. The fetching of data was also looking for multiple job data,
instead of one. This did not affect the recipesets functionality.

Updated Openshift Topology

topology_name: openshift
resource_groups:
 - resource_group_name: test1
 resource_group_type: openshift
 resource_definitions:
 - name: openshift
 role: openshift_inline
 data:
 - apiVersion: v1
 kind: ReplicationController
 metadata:
 name: jenkins-slave
 namespace: central-ci-test-ghelling
 spec:
 replicas: 7
 selector:
 name: jenkins-slave
 template:
 metadata:
 labels:
 name: jenkins-slave
 spec:
 containers:
 - image: redhatqecinch/jenkins_slave:latest
 name: jenkins-slave
 env:
 - name: JENKINS_MASTER_URL
 value: http://10.8.172.6/
 - name: JSLAVE_NAME
 value: mynode
 restartPolicy: Always
 securityPolicy:
 runAsUser: 1000090000
 credentials:
 api_endpoint: example.com:8443/
 api_token: mytokentextrighthere

Common Workflows

Having a basic understanding of LinchPin is crucial to this section. Knowing
the basic CLI operations leads nicely into using LinchPin in powerful
ways.

Topics

	Common Workflows

	Using linchpin fetch

	Retrieve a Remote Workspace

	Additional Options

	Contents of a Workspace

Using linchpin fetch

The linchpin fetch command provides a simple way to access a resource from
a remote location. One could simply perform a git clone, or use wget to
download a workspace. However, linchpin fetch makes this process
simpler, and includes some tooling to make the workflow smooth.

$ linchpin fetch --help
Usage: linchpin fetch [OPTIONS] REMOTE

 Fetches a specified linchpin workspace or component from a remote location

Options:
 -t, --type TYPE Which component of a workspace to fetch.
 (Default: workspace)
 -r, --root ROOT Use this to specify the location of the
 workspace within the root url. If root is not
 set, the root of the given remote will be used.
 --dest DEST Workspaces destination, the fetched workspace
 will be relative to this location. (Overrides
 -w/--workspace)
 --branch REF Specify the git branch. Used only with git
 protocol (eg. master).
 --git Remote is a Git repository (default)
 --web Remote is a web directory
 --nocache Do not check the cached time, just copy the
 data to the destination
 -h, --help Show this message and exit.

Retrieve a Remote Workspace

This document will cover how to use linchpin fetch to obtain a workspace
from a git repository. An example for fetching an http workspace can be
found here.

First, determine the destination. By default, the destination location
is the current working directory. In this guide, we’ll use /tmp/workspaces.

$ mkdir /tmp/workspaces
$ cd /tmp/workspaces

Using the simplest possible linchpin fetch command will fetch the
workspaces from git://github.com/herlo/lp_test_workspace.

$ linchpin fetch git://github.com/herlo/lp_test_workspace
destination workspace: /tmp/workspaces/

$ pwd
/tmp/workspaces
$ ls -l
total 4
-rw-rw-r-- 1 herlo herlo 980 Sep 5 13:53 linchpin.log
drwxrwxr-x 5 herlo herlo 140 Sep 5 13:54 multi-target
drwxrwxr-x 2 herlo herlo 80 Sep 5 13:54 openstack
drwxrwxr-x 3 herlo herlo 120 Sep 5 13:54 os-server-addl-vols

The directory structure of https://github.com/herlo/lp_test_workspace
should match the local directory as shown above.

As can be easily seen, linchpin fetch performed a git clone. Then copied
all of the directories to the current directory. linchpin fetch assumes the
root of the repository is a workspace.

Additional Options

If pulling all workspaces was not the intended action, there are other useful
options. First, perform a little clean up.

$ cd && rm -rf /tmp/workspaces # remove the workspaces directory
$ ls -l /tmp/workspaces
ls: cannot access '/tmp/workspaces/': No such file or directory

Note

From here on in, this guide will use the LinchPin git repository.
There are several :lp_dir:`workspaces <docs/source/examples/workspaces>`
with useful use cases. Feel free to peruse them as desired. This guide
will use these workspaces going forward.

To clone from a repository with multiple workspaces (eg. the linchpin
repository), a root must be specified. It is also recommended to use the
--dest flag.

$ linchpin fetch git://github.com/CentOS-PaaS-SIG/linchpin \
> --root workspaces/simple --dest /tmp/workspaces
Created destination workspace: /tmp/workspaces/simple

In this example, there are additional options. Let’s cover them in
detail:

	--root ROOT
	This is the root of the repository. Normally, the root of the repository
is used. However, if the workspaces reside elsewhere (eg. workspaces),
use this option.

	--dest DESTINATION
	If the current working directory is not the desired location, use this
option.

Performing a listing will show how these options affected the fetch.

$ ls -R /tmp/workspaces/
/tmp/workspaces/:
simple

/tmp/workspaces/simple:
PinFile README.rst

As expected, the simple root was pulled down, and placed inside the
/tmp/workspaces directory on the local machine.

To have all workspaces copied into /tmp/workspaces, a change is needed.

$ linchpin fetch git://github.com/CentOS-PaaS-SIG/linchpin \
> --root workspaces --dest /tmp
destination workspace: /tmp/workspaces

Note

An observant user will notice that the same destination was used.
This is because linchpin fetch maps the ROOT to the destination
automatically. This behavior can be adjusted by removing the –dest
option and specifying –workspace instead.

Listing the files again reveals more workspaces.

$ ls /tmp/workspaces/
dummy-aws dummy-two os-server-addl-vols random simple

Take a moment and investigate each of these workspaces.

Contents of a Workspace

Whether a workspace watch was created, or pulled using linchpin fetch, they
all should have some common components.

	README.rst
	A short description of the purpose for (or use case) the workspace

	PinFile
	A declarative file which indicates which resources should be provisioned,
any inventory layout to be generated, hooks, and other configurations

Note

The PinFile can be in YAML, JSON format. It can also be a script
that returns JSON to STDOUT

No other requirements are put on a workspace. However, there can be several
other files or directories. See Managing Resources for more information.

Workspaces

What is generated is commonly referred to as the workspace. The workspace can live anywhere on the filesystem. The default is the current directory. The workspace can also be passed into the linchpin command line with the --workspace (--w) option, or it can be set with the $WORKSPACE environmental variable.

An functional workspace can be found in :dirs1.5:`the source code <workspace>`.

 The following settings are in the [DEFAULT] section of the linchpin.conf

Warning

The configurations in this section should NOT be changed unless you know what you are doing.

pkg

This defines the package name. Many components base paths and other
information from this setting.

pkg = linchpin

default_config_path

New in version 1.2.0

Where configuration files might land, such as the workspaces.conf,
or credentials. Generally used in combination with other configurations.

default_config_path = ~/.config/linchpin

external_providers_path

New in version 1.5.0

Developers can provide additional provider playbooks and schemas.
This configuration is used to set the path(s) to look for additional providers.

external_providers_path = %(default_config_path)s/linchpin-x

The following settings are in the [init] section of the linchpin.conf

source

Source path of files provided for the linchpin init command.

source = templates/

pinfile

Formal name of the PinFile. Can be changed as desired.

pinfile = PinFile

 The following settings are in the [evars] section of the linchpin.conf

LinchPin sets several extra_vars values, which are passed to the provisioning playbooks.

Note

Default paths in playbooks exist.
lp_path = <src_dir>/linchpin
determined in the load_config method of linchpin.cli.LinchpinCliContext
if either of these change, the value in linchpin/templates must also change

_check_mode

Enables the Ansible
check_mode [http://docs.ansible.com/ansible/latest/playbooks_checkmode.html],
or Dry Run functionality. Most provisioners currently DO NOT support this
option

_check_mode = False

_async

LinchPin supports the Ansible async mode [http://docs.ansible.com/ansible/latest/playbooks_async.html]
for certain Examples for all Providers. Setting async = True here enables the feature.

_async = False

async_timeout

Works in conjunction with the async setting, defaulting
the async wait time to {{ async_timeout }} in provider playbooks

async_timeout = 1000

enable_uhash

In older versions of Linchpin, the uhash value was not used. If set to true,
the unique-ish hash (uhash) will be appended to instances (for providers who
support naming) and the inventory_path.

enable_uhash = False

generate_resources

In older versions of linchpin (<v1.0.4), a resources folder exists, which
dumped the data that is now stored in the RunDB.

generate_resources = True

output

Deprecated in version 1.2.0
Removed in version 1.5.0

Horribly named variable, no longer used

output = True

layouts_folder

Used in lookup for a specific layout within a workspace. The PinFile
specifies the layout without a path, this is the relative location.

Also used in combination with default_layouts_path <conf_def_layout_path>,
which isn’t generally used.

layouts_folder = layouts

topologies_folder

Used in lookup for a specific topology within a workspace. The PinFile
specifies the topology without a path, this is the relative location.

Also used in combination with default_topologies_path<conf_def_topo_path>,
which isn’t generally used.

topologies_folder = topologies

roles_folder

New in version 1.5.0

Used in combination with default_roles_path <conf_def_roles_path> for
external provider roles

roles_folder = roles

inventories_folder

Relative location where inventories will be written. Usually combined with the
default_inventories_path, but could be relative tothe workspace.

_check_mode = False

inventories_folder = inventories

hooks_folder

Relative location within the workspace where hooks data is stored

hooks_folder = hooks

resources_folder

Deprecated in version 1.5.0

Relative location of the resources destination path. Generally combined with
the default_resource_path

resources_folder = resources

schemas_folder

Deprecated in version 1.2.0

Relative location of the schemas within the LinchPin codebase

schemas_folder = schemas

playbooks_folder

Relative location of the Ansible playbooks and roles within the LinchPin codebase

playbooks_folder = provision

default_schemas_path

Deprecated in version 1.5.0

Used to locate default schemas, usually schema_v4 or
schema_v3

default_schemas_path = {{ lp_path }}/defaults/%(schemas_folder)s

default_topologies_path

Deprecated in version 1.2.0

Default location for topologies in cases where topology or
topology_file is not set.

default_topologies_path = {{ lp_path }}/defaults/%(topologies_folder)s

default_layouts_path

Deprecated in version 1.2.0

When inventories are processed, layouts are looked up here if layout_file is not set

default_layouts_path = {{ lp_path }}/defaults/%(layouts_folder)s

default_inventories_path

Deprecated in version 1.2.0

When writing out inventories, this path is used if inventory_file is not set

default_inventories_path = {{ lp_path }}/defaults/%(inventories_folder)s

default_resources_path

Deprecated in version 1.2.0

When writing out resources files, this path is used if inventory_file is not set

default_inventories_path = {{ lp_path }}/defaults/%(inventories_folder)s

default_roles_path

When using an external provider, this path points back to some of the core
roles needed in the provider’s playbook.

default_roles_path = {{ lp_path }}/%(playbooks_folder)s/%(roles_folder)s

default_roles_path = {{ lp_path }}/%(playbooks_folder)s/%(roles_folder)s

schema_v3

Deprecated in v1.5.0

Full path to the location of the schema_v3.json file, which is
used to perform validation of the topology.

_check_mode = False

schema_v3 = %(default_schemas_path)s/schema_v3.json

schema_v4

Deprecated in v1.5.0

Full path to the location of the schema_v4.json file, which is
used to perform validation of the topology.

schema_v4 = %(default_schemas_path)s/schema_v4.json

default_credentials_path

If the --creds-path option or $CREDS_PATH environment variable are not
set, use this location to look up credentials files defined in a topology.

default_credentials_path = %(default_config_path)s

inventory_path

New in version 1.5.0

The inventory_path is used to set the value of the resulting inventory
file which is generated by LinchPin. This value is dynamically generated by
default.

Note

This should not be confused with the inventory_file which is an
input to the LinchPin ansible playbooks.

#inventory_path = {{ workspace }}/{{inventories_folder}}/happy.inventory

default_ssh_key_path

New in version 1.2.0

Used solely in the libvirt provider <prov_libvirt>. Could be used to set a
default location for ssh keys that might be passed via a cloud-config setup.

default_ssh_key_path = ~/.ssh

libvirt_image_path

Where to store the libvirt images for copying/booting instances. This can be
adjusted to a user accessible location if permissions are an issue.

Note

Ensure the libvirt_user and libvirt_become options below are also
adjusted according to proper permissions.

libvirt_image_path = /var/lib/libvirt/images/

libvirt_user

What user to use to access the libvirt services.

Note

Specifying root means that linchpin will attempt to access the
libvirt service as the root user. If the linchpin user is not root, sudo
without password must be setup.

libvirt_user = root

libvirt_become

When using root or any privileged user, this must be set to yes.

Note

If the linchpin user is not root, sudo without password must also be setup.

libvirt_become = yes

 The following settings are in the [extensions] section of the linchpin.conf.

These settings define the file extensions certain files have..

resource

Deprecated in version 1.2.0

Removed in version 1.5.0

When generating resource output files, append this extension

resource = .output

inventory

When generating Ansible static inventory files, append this extension

inventory = .inventory

playbooks

New in version 1.5.0

Since playbooks fundamentially changed between v1.2.0 and v1.5.0, this
option was added for looking up a provider playbook. It’s unlikely this
value will change.

playbooks = .yml

 The following settings are in the [states] section of the linchpin.conf.

These settings define the state names, which are useful in preup.

preup

Define the name of the so called preup state. This state is set and
executed prior to the ‘up’ action being called, but after the PinFile
data is loaded.

preup = preup

predestroy

Define the name of the so called predestroy state. This state is set and
executed prior to the ‘destroy’ action being called, but after the PinFile
data is loaded.

predestroy = predestroy

postup

Define the name of the so called postup state. This state is set and
executed after to the ‘up’ action is completed, and after the postinv
state is executed.

postup = postup

postdestroy = postdestroy
~~

Define the name of the so called postdestroy state. This state is set and
executed after to the ‘destroy’ action is completed.

postdestroy = postdestroy

postinv

Define the name of the so called postinv state. This state is set and
executed after to the ‘up’ action is completed, and before the postup
state is executed. This is eventually going to be the inventory generation
hook.

postinv = inventory

The following settings are in the [hookstates] section of the linchpin.conf.

These settings define the ‘STATES’ each action uses in preup.

up

For the ‘up’ action, types of hook states are available for execution

up = pre,post,inv

destroy

For the ‘destroy’ action, types of hook states are available for execution

destroy = pre,post

inv

New in version 1.2.0

For the inventory generation, which only happens on an ‘up’ state.

Note

The postinv state currently doesn’t do anything. In the future,
it will provide a way to generate inventories besides the standard Ansible
static inventory.

inv = post

 The following settings are in the [init] section of the linchpin.conf.

These settings specifically pertain to linchpin init, which stores
templates in the source code to generate a simple example workspace.

source

Location of templates stored in the source code. The structure is built to
resemble the directory structure explained in linchpin init.

source = templates/

pinfile

Formal name of the PinFile. Can be changed as desired.

pinfile = PinFile

 The following settings are in the [logger] section of the linchpin.conf.

Note

These settings are ONLY used for the Command Line Interface. The API
configures a console output only logger and expects the functionality to be
overwritten in subclasses.

enable

Whether logging to a file is enabled

enable = True

file

Name of the file to write the log. A relative or full path is acceptable.

file = linchpin.log

format

The format in which logs are written.
See https://docs.python.org/2/library/logging.html#logrecord-attributes
for more detail and available options.

format = %%(levelname)s %%(asctime)s %%(message)s

dateformat

How to display the date in logs.
See https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
for more detail and available options.

Note

This action was never implemented.

dateformat = %%m/%%d/%%Y %%I:%%M:%%S %%p

level

Default logging level

level = logging.DEBUG

The following settings are in the [console] section of the linchpin.conf.

Each of these settings is for logging output to the console, except for Ansible
output.

format

The format in which console output is written.
See https://docs.python.org/2/library/logging.html#logrecord-attributes
for more detail and available options.

format = %%(message)s

level

Default logging level

level = logging.INFO

 The following settings are in the [lp] section of the linchpin.conf

module_folder

Load custom ansible modules from this directory

module_folder = library

rundb_type

New in version 1.2.0

RunDB supports additional drivers, currently the only driver is
TinyRunDB, based upon tinydb.

rundb_type = TinyRunDB

rundb_conn

New in version 1.2.0

The resource path to the RunDB connection. The TinyRunDB version (default)
is a file.

Default: {{ workspace }}/.rundb/rundb.json

The configuration file has this option commented out. Uncommenting it could
enable a system-central rundb, if desired.

#rundb_conn = %(default_config_path)s/rundb/rundb-::mac::.json

rundb_conn_type

New in version 1.2.0

Set this value if the RunDB resource is anything but a file. This setting
is linked to the rundb_conn configuration.

rundb_conn_type = file

rundb_conn_schema

New in version 1.2.0

The schema used to store records in the TinyRunDb. Many other databases
will likely not use this value, but must honor the configuration item.

rundb_schema = {"action": "",
 "inputs": [],
 "outputs": [],
 "start": "",
 "end": "",
 "rc": 0,
 "uhash": ""}

rundb_hash

New in version 1.2.0

Hashing algorithm used to create the uHash.

rundb_hash = sha256

dateformat

New in version 1.2.0

The dateformat to use when writing out start and end times to the RunDB.

dateformat = %%m/%%d/%%Y %%I:%%M:%%S %%p

default_pinfile

New in version 1.2.0

The dateformat to use when writing out start and end times to the RunDB.

default_pinfile = PinFile

 The following settings are in the [playbooks] section of the linchpin.conf.

Note

The entirety of this section is removed in version 1.5.0+.
The redesign of the LinchPin API now calls individual playbooks based
upon the resource_group_type value.

up

Removed in version 1.5.0

Name of the playbook associated with the ‘up’ (provision) action

up = site.yml

destroy

Removed in version 1.5.0

Name of the playbook associated with the ‘destroy’ (teardown) action

destroy = site.yml

down

Removed in version 1.5.0

Name of the playbook associated with the ‘down’ (halt) action

Note

This action has not been implemented.

down = site.yml

schema_check

Removed in version 1.5.0

Name of the playbook associated with the ‘schema_check’ action.

Note

This action was never implemented.

schema_check = schemacheck.yml

inv_gen

Removed in version 1.5.0

Name of the playbook associated with the ‘inv_gen’ action.

Note

This action was never implemented.

inv_gen = invgen.yml

test

Removed in version 1.5.0

Name of the playbook associated with the ‘test’ action.

Note

This action was never implemented.

test = test.yml

 One method to provide AWS credentials that can be loaded by LinchPin is to use
the INI format that the AWS CLI tool [https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html]
uses.

Credentials File

An example credentials file may look like this for aws.

$ cat aws.key
[default]
aws_access_key_id=ARYA4IS3THE3NO7FACEB
aws_secret_access_key=0Hy3x899u93G3xXRkeZK444MITtfl668Bobbygls

[herlo_aws1_herlo]
aws_access_key_id=JON6SNOW8HAS7A3WOLF8
aws_secret_access_key=Te4cUl24FtBELL4blowSx9odd0eFp2Aq30+7tHx9

See also

providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first
is which credentials to use. The second is where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are
described by specifying the file, then the profile. As shown above, the
filename is ‘aws.key’. The user could pick either profile in that file.

topology_name: ec2-new
resource_groups:
 - resource_group_name: "aws"
 resource_group_type: "aws"
 resource_definitions:
 - name: demo-day
 flavor: m1.small
 role: aws_ec2
 region: us-east-1
 image: ami-984189e2
 count: 1
 credentials:
 filename: aws.key
 profile: default

The important part in the above topology is the credentials section. Adding
credentials like this will look up, and use the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is
~/.config/linchpin.

Hint

The default_credentials_path value uses the interpolated
:dirs1.5:`default_config_path <workspace/linchpin.conf#L22>` value, and
can be overridden in the :docs1.5:`linchpin.conf`.

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up aws-ec2-new

Note

The aws.key file could be placed in the
default_credentials_path. In that case passing
--creds-path would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up aws-ec2-new

 Beaker provides several ways to authenticate. LinchPin supports these methods.

	Kerberos

	OAuth2

Note

LinchPin doesn’t support the username/password authentication
mechanism. It’s also not recommended by the Beaker Project, except for
initial setup.

Google Cloud Key File

GCloud allows for the creation of keyfiles for authentication. A keyfile will look something like this:

{
 "type": "service_account",
 "project_id": "[PROJECT-ID]",
 "private_key_id": "[KEY-ID]",
 "private_key": "-----BEGIN PRIVATE KEY-----\n[PRIVATE-KEY]\n-----END PRIVATE KEY-----\n",
 "client_email": "[SERVICE-ACCOUNT-EMAIL]",
 "client_id": "[CLIENT-ID]",
 "auth_uri": "https://accounts.google.com/o/oauth2/auth",
 "token_uri": "https://accounts.google.com/o/oauth2/token",
 "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
 "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/[SERVICE-ACCOUNT-EMAIL]"
}

To learn how to generate key files, see the google cloud documentation <https://cloud.google.com/iam/docs/creating-managing-service-account-keys>.

This mechanism requires that credentials data be passed into LinchPin. A GCloud topology can have a credentials section for each resource_group, which requires the filename and the profile name. By default, LinchPin searches for the filename in {{ workspace }}/credentials but can be made to search other places by setting the evars.default_credentials_path variable in your linchpin.conf. The credentials path can also be overridden by using the --creds-path flag.

topology_name: mytopo
resource_groups:
 - resource_group_name: gce
 - resource_group_type: gcloud
 resource_definitions:

 .. snip ..

 credentials:
 filename: gcloud.key

 Libvirt doesn’t require credentials via LinchPin. Multiple options are
available for authenticating against a Libvirt daemon (libvirtd). Most methods
are detailed here [https://libvirt.org/auth.html]. If desired, the uri for
the resource can be set using one of these mechanisms.

By default, however, libvirt requires sudo access to use. To allow users
without sudo access to provision libvirt instances, run the following commands
on the target machine:

	Create the libvirt group if it does not exist

$ getent group | grep libvirt
$ groupadd -g 7777 libvirt

	Add user account to libvirt and qemu groups

$ usermod -aG libvirt,qemu <user>

	Edit libvirtd configuration to add group

$ cat <<EOF >>/etc/libvirt/libvirtd.conf
unix_sock_group = "libvirt"
unix_sock_rw_perms = "0770"
EOF

	Restart the libvirtd daemon

$ systemctl restart libvirtd

The next time the user logs in, they will be able to provision libvirt disks
without sudo access

Environment Variables

LinchPin honors the OpenStack environment variables such as $OS_USERNAME,
$OS_PROJECT_NAME, etc.

See the OpenStack documentation cli documentation [https://docs.openstack.org/python-openstackclient/pike/cli/man/openstack.html#manpage]
for details.

Note

No credentials files are needed for this method. When LinchPin calls
the OpenStack provider, the environment variables are automatically picked
up by the OpenStack Ansible modules, and passed to OpenStack for
authentication.

Using OpenStack Credentials

OpenStack provides a simple file structure using a file called
clouds.yaml [https://docs.openstack.org/os-client-config/latest/user/configuration.html],
to provide authentication to a particular tenant. A single clouds.yaml file might contain several entries.

clouds:
 devstack:
 auth:
 auth_url: http://192.168.122.10:35357/
 project_name: demo
 username: demo
 password: 0penstack
 region_name: RegionOne
 trystack:
 auth:
 auth_url: http://auth.trystack.com:8080/
 project_name: trystack
 username: herlo-trystack-3855e889
 password: thepasswordissecrte

Using this mechanism requires that credentials data be passed into LinchPin.

An OpenStack topology can have a credentials section for each
resource_group, which requires the filename, and the profile name.

It’s worth noting that we can’t give you credentials to use, so you’ll have to provide
your own filename and profile here. By default, LinchPin searches for the filename in
{{ workspace}}/credentials but can be made to search other places by setting the
evars.default_credentials_path variable in your linchpin.conf. The credentials
path can also be overridden by using the --creds-path flag.

topology_name: topo
resource_groups:
 - resource_group_name: openstack
 resource_group_type: openstack
 resource_definitions:

 .. snip ..

 credentials:
 filename: clouds.yaml
 profile: devstack

Environment Variables

Linchpin honors the following environment variables:

	Environment variable

	Credentials variable

	Description

	VMWARE_PASSWORD

	password

	The password of the vSphere
vCenter or ESXi server

	VMWARE_USER

	username

	The username of the vSphere
vCenter or ESXi server.

	VMWARE_HOST

	hostname

	The hostname or IP address of
the vSphere vCenter or ESXi
server.

	VMWARE_PORT

	port

	The port number of the vSphere
vCenter or ESXi server.

	VMWARE_VALIDATE_CERTS

	validate_certs

	Allows connection when SSL
certificates are not valid.

Credentials File

An example credentials file may look like this for vmware.

$ cat vmware.key
 [default]
 username=root
 password=VMware1!
 hostname=192.168.122.125
 validate_certs=false

See also

providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first
is which credentials to use. The second is where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are
described by specifying the file, then the profile. As shown above, the
filename is ‘vmware.key’. The user could pick either profile in that file.

topology_name: vmware-new
resource_groups:
 - resource_group_name: vmware-new
 resource_group_type: vmware
 resource_definitions:
 - role: vmware_guest
 name: vmware-node
 cdrom:
 type: iso
 iso_path: "[ha-datacenter] tc_vmware4.iso"
 folder: /
 datastore: ha-datacenter
 disk:
 - size_mb: 10
 type: thin
 hardware:
 num_cpus: 1
 memory_mb: 256
 networks:
 - name: VM Network
 wait_for_ip_address: yes
 credentials:
 filename: vmware.key
 profile: default

The important part in the above topology is the credentials section. Adding
credentials like this will look up, and use the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is
~/.config/linchpin.

Hint

The default_credentials_path value uses the interpolated
:dirs1.5:`default_config_path <workspace/linchpin.conf#L22>` value, and
can be overridden in the :docs1.5:`linchpin.conf`.

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up vmware-new

Note

The vmware.key file could be placed in the
default_credentials_path. In that case passing
--creds-path would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up vmware-new

 One method to provide AWS credentials that can be loaded by LinchPin is to use
the INI format that the AWS CLI tool [https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html]
uses.

Credentials File

An example credentials file may look like this for aws.

$ cat aws.key
[default]
aws_access_key_id=ARYA4IS3THE3NO7FACEB
aws_secret_access_key=0Hy3x899u93G3xXRkeZK444MITtfl668Bobbygls

[herlo_aws1_herlo]
aws_access_key_id=JON6SNOW8HAS7A3WOLF8
aws_secret_access_key=Te4cUl24FtBELL4blowSx9odd0eFp2Aq30+7tHx9

See also

providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first
is which credentials to use. The second is where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are
described by specifying the file, then the profile. As shown above, the
filename is ‘aws.key’. The user could pick either profile in that file.

topology_name: ec2-new
resource_groups:
 - resource_group_name: "aws"
 resource_group_type: "aws"
 resource_definitions:
 - name: demo-day
 flavor: m1.small
 role: aws_ec2
 region: us-east-1
 image: ami-984189e2
 count: 1
 credentials:
 filename: aws.key
 profile: default

The important part in the above topology is the credentials section. Adding
credentials like this will look up, and use the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is
~/.config/linchpin.

Hint

The default_credentials_path value uses the interpolated
:dirs1.5:`default_config_path <workspace/linchpin.conf#L22>` value, and
can be overridden in the :docs1.5:`linchpin.conf`.

The default path is “./credentials”
The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up aws-ec2-new

Note

The aws.key file could be placed in the
default_credentials_path. In that case passing
--creds-path would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up aws-ec2-new

 The most basic usage of linchpin might be to perform an up action. This simple command assumes a PinFile in the workspace (current directory by default), with one target dummy.

$ linchpin up
Action 'up' on Target 'dummy' is complete

Target Run ID uHash Exit Code

dummy 75 79b9 0

Upon completion, the systems defined in the dummy target will be provisioned. An equally basic usage of linchpin is the destroy action. This command is peformed using the same PinFile and target.

$ linchpin destroy
Action 'destroy' on Target 'dummy' is complete

Target Run ID uHash Exit Code

dummy 76 79b9 0

Upon completion, the systems which were provisioned, are destroyed (or torn down).

Preview Feature:

linchpin up and destroy includes –use-shell parameter which makes linchpin run as a subprocess rather than ansible api call
usefull when we would like to overwrite environment varibles

$ linchpin -vvvv up --use-shell --env-vars TESTENV testenv value

 The linchpin command also allows combinining of general options with subcommand options. A good example of these might be to use the verbose (-v) option. This is very helpful in both the up and destroy subcommands.

$ linchpin -v up dummy-new -r 72
using data from run_id: 72
rundb_id: 73
uhash: a48d
calling: preup
hook preup initiated

PLAY [schema check and Pre Provisioning Activities on topology_file] ********

TASK [Gathering Facts] **
ok: [localhost]

TASK [common : use linchpin_config if provided] *****************************

What can be immediately observed, is that the -v option provides more verbose output of a particular task. This can be useful for troubleshooiting or giving more detail about a specitic task. The -v option is placed before the subcommand. The -r option, since it applies directly to the up subcommand, it is placed afterward. Investigating the linchpin -help and linchpin up --help can help differentiate if there’s confusion.

Verbose Output

$ linchpin -v up dummy-new

Specify an Alternate PinFile

$ linchpin -vp Pinfile.alt up

Specify an Alternate Workspace

$ export WORKSPACE=/tmp/my_workspace
$ linchpin up libvirt

or

$ linchpin -vw /path/to/workspace destroy openshift

Provide Credentials

$ export CREDS_PATH=/tmp/my_workspace
$ linchpin -v up libvirt

or

$ linchpin -v --creds-path /credentials/path up openstack

Note

The value provided to the --creds-path option is a directory,
NOT a file. This is generally due to the topology containing the
filename where the credentials are stored.

 Getting help from the command line is very simple. Running either linchpin
or linchpin --help will yield the command line help page.

$ linchpin --help
Usage: linchpin [OPTIONS] COMMAND [ARGS]...

 linchpin: hybrid cloud orchestration

Options:
 -c, --config PATH Path to config file
 -p, --pinfile PINFILE Use a name for the PinFile different from
 the configuration.
 -d, --template-data TEMPLATE_DATA
 Template data passed to PinFile template
 -o, --output-pinfile OUTPUT_PINFILE
 Write out PinFile to provided location
 -w, --workspace PATH Use the specified workspace. Also works if
 the familiar Jenkins WORKSPACE environment
 variable is set
 -v, --verbose Enable verbose output
 --version Prints the version and exits
 --creds-path PATH Use the specified credentials path. Also
 works if CREDS_PATH environment variable is
 set
 -h, --help Show this message and exit.

Commands:
 init Initializes a linchpin project.
 up Provisions nodes from the given target(s) in...
 destroy Destroys nodes from the given target(s) in...
 fetch Fetches a specified linchpin workspace or...
 journal Display information stored in Run Database...

For subcommands, like linchpin up, passing the --help or -h option produces help related to the provided subcommand.

$ linchpin up -h
Usage: linchpin up [OPTIONS] TARGETS

 Provisions nodes from the given target(s) in the given PinFile.

 targets: Provision ONLY the listed target(s). If omitted, ALL targets
 in the appropriate PinFile will be provisioned.

 run-id: Use the data from the provided run_id value

Options:
 -r, --run-id run_id Idempotently provision using `run-id` data
 -h, --help Show this message and exit.

As can easily be seen, linchpin up has additional arguments and options.

 The most common argument available in linchpin is the TARGET. Generally, the PinFile will have many targets available, but only one or two will be requested.

$ linchpin up dummy-new libvirt-new
Action 'up' on Target 'dummy' is complete
Action 'up' on Target 'libvirt' is complete

Target Run ID uHash Exit Code

dummy 77 73b1 0
libvirt 39 dc2c 0

In some cases, you may wish to use a different PinFile.

$ linchpin -p PinFile.json up
Action 'up' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 29 c70a 0

As you can see, this PinFile had a target called dummy-new, and it was the only target listed.

Other common options include:

	--verbose (-v) to get more output

	--config (-c) to specify an alternate configuration file

	--workspace (-w) to specify an alternate workspace

 The linchpin fetch command provides a simple way to access a resource from
a remote location. One could simply perform a git clone, or use wget to
download a workspace. However, linchpin fetch makes this process
simpler, and includes some tooling to make the workflow smooth.

$ linchpin fetch --help
Usage: linchpin fetch [OPTIONS] REMOTE

 Fetches a specified linchpin workspace or component from a remote location

Options:
 -t, --type TYPE Which component of a workspace to fetch.
 (Default: workspace)
 -r, --root ROOT Use this to specify the location of the
 workspace within the root url. If root is not
 set, the root of the given remote will be used.
 --dest DEST Workspaces destination, the fetched workspace
 will be relative to this location. (Overrides
 -w/--workspace)
 --branch REF Specify the git branch. Used only with git
 protocol (eg. master).
 --git Remote is a Git repository (default)
 --web Remote is a web directory
 --nocache Do not check the cached time, just copy the
 data to the destination
 -h, --help Show this message and exit.

See also

	User Mailing List [https://www.redhat.com/mailman/listinfo/linchpin]
	Subscribe and participate. A great place for Q&A

	LinchPin on Github [https://github.com/CentOS-PaaS-SIG/linchpin]
	Code Contributions and Latest Software

	webchat.freenode.net [http://webchat.freenode.net?channels=linchpin]
	#linchpin IRC chat channel

	LinchPin on PyPi [https://pypi.org/project/linchpin/]
	Latest Release of LinchPin

 Running linchpin init will generate the workspace directory structure, along with an example PinFile, topology, and layout files. Performing the following tasks will generate a simple dummy folder with All in one PinFile which includes topology, and layout structure.

$ pwd
/tmp/workspace
$ linchpin init
Created destination workspace <path>
$ tree

├── dummy
│ ├── PinFile
│ ├── PinFile.json
│ └── README.rst
└── linchpin.log

 The default view, ‘target’, is displayed using the target. The data displayed to the screen shows the last three (3) tasks per target, along with some useful information.

$ linchpin journal --view=target dummy-new

Target: dummy-new
run_id action uhash rc
--
5 up 0658 0
4 destroy cf22 0
3 up cf22 0

Note

The ‘target’ view is the default, making the –view optional.

The target view can show more data as well. Fields (-f, --fields) and
count (-c, --count) are useful options.

$ linchpin journal dummy-new -f action,uhash,end -c 5

Target: dummy-new
run_id action uhash end
--
6 up cd00 12/15/2017 05:12:52 PM
5 up 0658 12/15/2017 05:10:52 PM
4 destroy cf22 12/15/2017 05:10:29 PM
3 up cf22 12/15/2017 05:10:17 PM
2 destroy 6d82 12/15/2017 05:10:06 PM
1 up 6d82 12/15/2017 05:09:52 PM

It is simple to see that the output now has five (5) records, each containing the run_id, action, uhash, and end date.

The data here can be used to perform idempotent (repetitive) tasks, like running the up action on run_id: 5 again.

$ linchpin up dummy-new -r 6
Action 'up' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 7 cd00 0

What might not be immediately obvious, is that the uhash on Run ID: 7 is identical to the run_id: 6 shown in the previous linchpin journal output. Essentially, the same task was run again.

Note

If LinchPin is configured with the unique-hash feature, and the provider supports naming, resources can have unique names. These features are turned off by default.

The destroy action will automatically look up the last task with an up action and destroy it. If other resources are needed to be destroyed, a run_id should be passed to the task.

$ linchpin destroy dummy-new -r 5
Action 'destroy' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 8 0658 0

 The transaction view, provides data based upon each transaction.

$ linchpin journal --view tx --count 1

ID: 130 Action: up

Target Run ID uHash Exit Code

dummy-new 279 920c 0
libvirt 121 ef96 0

===

In the future, the transaction view will also provide output for these items.

 An inventory_layout (or layout) is written in YAML or JSON (v1.5+), and defines how the provisioned resources should look in an Ansible static inventory file. The inventory is generated from the resources provisioned by the topology and the layout data. A layout is shown here.

inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 example-node:
 count: 1
 host_groups:
 - example

The above YAML allows for interpolation of the ip address, or hostname as a component of a generated inventory. A host group called example will be added to the Ansible static inventory. The all group always exists, and includes all provisioned hosts.

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

Note

A keen observer might notice the filename and hostname are appended with -0446. This value is called the uhash or unique-ish hash. Most providers allow for unique identifiers to be assigned automatically to each hostname as well as the inventory name. This provides a flexible way to repeat the process, but manage multiple resource sets at the same time.

Advanced layout examples can be found by reading ra_inventory_layouts.

Note

Additional layout examples can be found in :dirs1.5:`the source code <workspace/layouts>`.

 LinchPin can provision or teardown any number of resources. If a PinFile has multiple targets, and is called without a target name, all targets will be executed. Given this PinFile.

example:
 topology: example-topology.yml
 layout: example-layout.yml

example2:
 topology: example2-topology.yml
 layout: example2-layout.yml

dummy1:
 topology: dummy-cluster.yml
 layout: dummy-layout.yml

A call to linchpin up would provision and generate an Ansible static inventory for each target.

$ linchpin up
target: dummy1, action: up

target: example2, action: up

target: example, action: up

 A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a resource for provisioning. An example Pinfile is shown.

dummy_cluster:
 topology: dummy-topology.yml
 layout: dummy-layout.yml

The PinFile collects the given topology and layout into one place. Many targets can be referenced in a single PinFile.

JSON PinFile

New in version 1.5.0

The PinFile can also use JSON.

{
 "dummy": {
 "topology": "dummy-topology.yml",
 "layout:": "dummy-layout.yml"
 }
}

Additionally, both the topology, and layout can be included inline.

{
 "dummy": {
 "topology": {
 "resource_groups": [
 {
 "resource_definitions": [
 {
 "count": 3,
 "name": "web",
 "role": "dummy_node"
 }
],
 "resource_group_name": "dummy",
 "resource_group_type": "dummy"
 }
],
 "topology_name": "dummy_cluster"
 },
 "layout": {
 "inventory_layout": {
 "hosts": {
 "example-node": {
 "count": 3,
 "host_groups": [
 "example"
]
 }
 },
 "vars": {
 "hostname": "__IP__"
 }
 }
 }
 }
}

Generated PinFile

New in version 1.5.0

Jinja2 Templates

A PinFile can also be generated via Jinja2 [http://jinja.pocoo.org/docs/2.10/] templates. Consider this template named PinFile.libvirt-mi.template.

libvirt-mi:
 topology:
 topology_name: "libvirt-multi"
 resource_groups:
 - resource_group_name: "libvirt-mi"
 resource_group_type: "libvirt"
 res_defs:
 {% for instance in instances %}
 - role: libvirt_node
 name: {{ instance.name }}
 image_src: {{ instance.src }}
 memory: 1024
 vcpus: 1
 arch: {{ instance.arch | default('x86_64') }}
 networks:
 - name: default
 {% endfor %}

In the same workspace is this file, named Data.libvirt-my.yml.

instances:
 - name: centos71
 src: http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz
 - name: centos66
 src: http://cloud.centos.org/centos/6.6/images/CentOS-6-x86_64-GenericCloud-1711.qcow2.xz

Execute the linchpin command, passing these two files.

linchpin -vp PinFile.libvirt-mi.template --template-data Data.libvirt-my.yml up

Would yield output that would be provisionable.

{
 "libvirt-mi": {
 "topology": {
 "topology_name": "libvirt-multi",
 "resource_groups": [
 {
 "resource_group_name": "libvirt-mi",
 "resource_group_type": "libvirt",
 "res_defs": [
 {
 "name": "centos71",
 "networks": [
 {
 "name": "default"
 }
],
 "vcpus": 1,
 "role": "libvirt_node",
 "memory": 1024,
 "arch": "x86_64",
 "image_src": "http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz"
 },
 {
 "name": "centos66",
 "networks": [
 {
 "name": "default"
 }
],
 "vcpus": 1,
 "role": "libvirt_node",
 "memory": 1024,
 "arch": "x86_64",
 "image_src": "http://cloud.centos.org/centos/6.6/images/CentOS-6-x86_64-GenericCloud-1711.qcow2.xz"
 }
]
 }
]
 }
 }
}

Note

Output data can also be saved, if desired, by adding the --output-pinfile /path/to/PinFile.libvirt-mi.generated.

Additional PinFile examples can be found in :dirs1.5:`the source code <workspace>`.

 Once a PinFile, topology, and optional layout are in place, provisioning can happen. Performing the command linchpin up should provision the resources and inventory files based upon the topology_name value. In this case, is dummy_cluster.

$ linchpin up
target: dummy_cluster, action: up
Action 'up' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy-new 83 a18e9a 0
dummy-topo 70 044695 0

As you can see, the generated inventory file has the right data. This can be used in many ways, which will be covered elsewhere in the documentation.

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

To verify resources with the dummy cluster, check /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-0446-0.example.net
test-0446-0.example.net

A subset of the hosts in a PinFile can be provisioned by listing each of them at the end of the command

$ linchin -vv up dummy-new

Target Run ID uHash Exit Code

dummy-new 83 a18e9a 0

Preview Feature:

linchpin up and destroy includes –use-shell parameter which makes linchpin run as a subprocess rather than ansible api call
usefull when we would like to overwrite environment varibles

$ linchpin -vvvv up dummy-new --use-shell --env-vars TESTENV testenv value

 Some providers require additional dependencies installed on the system running linchpin. Use linchpin setup to setup the given provider(s) properly.

If a list of providers is ommitted, then it will install dependencies for all providers that need so.

In case you execute linchpin setup with a user not allowed to install packages, then pass the –ask-sudo-pass option to prompt for the sudo password.

 The linchpin ssh command provides a simple way to connect to provisioned
systems. Instead of looking for the system in the inventory file and writing
an ssh command, it is easy as writing linchpin ssh, hitting <TAB><TAB>
and selecting the system. The double tab works with linchpin auto-complete
that can be enabled by running: eval "$(_LINCHPIN_COMPLETE=source linchpin)"

The SSH command will look for the latest inventory generated by Linchpin for
connection information.

$ linchpin ssh --help
Usage: linchpin ssh [OPTIONS] TARGET

Options:
 -h, --help Show this message and exit.

 As expected, LinchPin can also perform teardown of resources. A teardown action generally expects that resources have been provisioned. However, because Ansible is idempotent, linchpin destroy will only check to make sure the resources are up. Only if the resources are already up will the teardown happen.

The command linchpin destroy will look up the resources and/or topology files (depending on the provider) to determine the proper teardown procedure. The dummy Ansible role does not use the resources, only the topology during teardown.

$ linchpin destroy
target: dummy_cluster, action: destroy
Action 'destroy' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 71 0446 0

Verify the /tmp/dummy.hosts file to ensure the records have been removed.

$ cat /tmp/dummy.hosts
-- EMPTY FILE --

Note

The teardown functionality is slightly more limited around ephemeral
resources, like networking, storage, etc. It is possible that a network
resource could be used with multiple cloud instances. In this way,
performing a linchpin destroy does not teardown certain resources. This
is dependent on each providers implementation.

See also

Examples for all Providers

 The topology is declarative, written in YAML or JSON (v1.5+), and defines how the provisioned systems should look after executing the linchpin up command. A simple dummy topology is shown here.

topology_name: "dummy_cluster" # topology name
resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 - name: "web"
 role: "dummy_node"
 count: 1

This topology describes a single dummy system that will be provisioned when linchpin up is executed. Once provisioned, the resources outputs are stored for reference and later lookup. Additional topology examples can be found in :dirs1.5:`the source code <workspace/topologies>`.

Validate Command

The purpose of the validate command is to determine whether topologies and layouts are syntactically valid. If not, it will provide a list of errors that occured during validation

The command linchpin validate looks at the topology and layout files for each target in a given PinFile. If the topology is not valid under the current schema, it will attempt to convert the topology to an older schema and try again. If the topology is still invalid, the command will report the topology and a list of errors found.

Invalid Topologies

Here is a simple PinFile and topology file. The topology file has some errors and will not validate.

libvirt-new:
 topology: libvirt-new.yml
 layout: libvirt.yml

libvirt:
 topology: libvirt.yml
 layout: libvirt.yml

libvirt-network:
 topology: libvirt-network.yml

topology_name: libvirt-new
resource_groups:
 - resource_group_name: libvirt-new
 resource_group_type: libvirt
 resource_definitions:
 - role: libvirt_node
 uri: qemu:///system
 count: "1"
 image_src: http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz
 memory: 2048
 vcpus: 1
 arch: x86_64
 ssh_key: libvirt
 networks:
 - name: default
 additional_storage: 10G
 cloud_config:
 users:
 - name: herlo
 gecos: Clint Savage
 groups: wheel
 sudo: ALL=(ALL) NOPASSWD:ALL
 ssh-import-id: gh:herlo
 lock_passwd: true

$ linchpin validate
topology for target 'libvirt-network' is valid

Topology for target 'libvirt-new' does not validate
topology: 'OrderedDict([('topology_name', 'libvirt-new'), ('resource_groups', [OrderedDict([('resource_group_name', 'libvirt-new'), ('resource_group_type', 'libvirt'), ('resource_definitions', [OrderedDict([('role', 'libvirt_node'), ('uri', 'qemu:///system'), ('image_src', 'http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz'), ('memory', 2048), ('vcpus', '1'), ('arch', 'x86_64'), ('ssh_key', 'libvirt'), ('networks', [OrderedDict([('name', 'default'), ('hello', 'world')])]), ('additional_storage', '10G'), ('cloud_config', OrderedDict([('users', [OrderedDict([('name', 'herlo'), ('gecos', 'Clint Savage'), ('groups', 'wheel'), ('sudo', 'ALL=(ALL) NOPASSWD:ALL'), ('ssh-import-id', 'gh:herlo'), ('lock_passwd', True)])])])), ('count', 1)])])])])])'
errors:
 res_defs[0][count]: value for field 'count' must be of type 'integer'
 res_defs[0][networks][0][additional_storage]: field 'additional_storage' could not be recognized within the schema provided
 res_defs[0][name]: field 'name' is required

topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

The linchpin validate command can also provide a list of errors against the old schema with the –old-schema flag

$ linchpin validate --old-schema

Topology for target 'libvirt-new' does not validate
topology: 'OrderedDict([('topology_name', 'libvirt-new'), ('resource_groups', [OrderedDict([('resource_group_name', 'libvirt-new'), ('resource_group_type', 'libvirt'), ('resource_definitions', [OrderedDict([('role', 'libvirt_node'), ('uri', 'qemu:///system'), ('image_src', 'http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz'), ('memory', 2048), ('vcpus', '1'), ('arch', 'x86_64'), ('ssh_key', 'libvirt'), ('networks', [OrderedDict([('name', 'default'), ('hello', 'world')])]), ('additional_storage', '10G'), ('cloud_config', OrderedDict([('users', [OrderedDict([('name', 'herlo'), ('gecos', 'Clint Savage'), ('groups', 'wheel'), ('sudo', 'ALL=(ALL) NOPASSWD:ALL'), ('ssh-import-id', 'gh:herlo'), ('lock_passwd', True)])])])), ('count', 1)])])])])])'
errors:
 res_defs[0][networks][0][additional_storage]: field 'additional_storage' could not be recognized within the schema provided
 res_defs[0][name]: field 'name' is required

topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

As you can see, validation under both schemas result in an error stating that the field additional_storage could not be recognized. In this case, there is simply an indentation error. additional_storage is a recognized field within resource_definitions but not within the networks sub-schema. Other times this unrecognized field may be a spelling error. Both fields also flag the missing “name” field, which is required. Both of these errors must be fixed in order for the topology file to validate. Because making count a string only results in an error when validating against the old schema, this field does not have to be changed in order for the topology file to pass validation. However, it is best to change it anyway and keep your topology as up-to-date as possible.

Valid Topologies

The topology below has been fixed so that it will validate under the current schema.

topology_name: libvirt-new
resource_groups:
 - resource_group_name: libvirt-new
 resource_group_type: libvirt
 resource_definitions:
 - role: libvirt_node
 name: centos71
 uri: qemu:///system
 count: 1
 image_src: http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz
 memory: 2048
 vcpus: 1
 arch: x86_64
 ssh_key: libvirt
 networks:
 - name: default
 additional_storage: 10G
 cloud_config:
 users:
 - name: herlo
 gecos: Clint Savage
 groups: wheel
 sudo: ALL=(ALL) NOPASSWD:ALL
 ssh-import-id: gh:herlo
 lock_passwd: true

If linchpin validate is run on a PinFile containing the topology above, this will be the output:

$ linchpin validate
topology for target 'libvirt-new' is valid
topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

 What is generated is commonly referred to as the workspace. The workspace can live anywhere on the filesystem. The default is the current directory. The workspace can also be passed into the linchpin command line with the --workspace (--w) option, or it can be set with the $WORKSPACE environmental variable.

An functional workspace can be found in :dirs1.5:`the source code <workspace>`.

LinchPin 1.0.0 RELEASE NOTES

Enhancements

	Better python package
- Reduce noise by containing the library under the linchpin namespace

	Beaker provisioner

	Convert from linchpin_config.yml to linchpin.conf
- Add tooling to load configurations from linchpin.conf

	LinchPin Context to manage environment

	Unit Tests
- Testing of python libraries, including API, Context, CLI, etc.
- Created dummy provisining provider to perform testing

	Hooks
- pre / post hooks for both up and destroy actions

	Direct credential management
- All core cloud providers (gce, ec2, openstack) can authenticate using their traditional method
- An override can be passed via the CLI/API using the variable creds_path

	Customizable workspace in the CLI/API
- LinchPin now provides a workspace option. The PinFile, topology, layout and hooks live here.

	Context provides logging to a centralized log file, console (stdout/stderr), or both

	OpenShift provisioning provider

	

Documentation Improvements

	Beaker topology

	Inline API documentation now on readthedocs

Bug Fixes

	#177 Missing dependency for python-krbV

While this bug indicated wontfix and was closed, the improvement was instead to add functionality to the setup.py. This created the ability to ship extra dependencies by simply performing a pip install linchpin[krbV].

	#202 linchpin-config.yml inconsistencies

This lead to the rework of the configuration into linchpin.conf, and the Context objects

	#225 Linchpin multiple targets no longer work

When running linchpin up/destroy actions, if no target(s) are passed, all targets are acted upon. This failed after reworking the linchpin.conf and adding the Context object.

	#226 Returned results from API calls (up and destroy) when console set to False does not contain failures

This bug prevented certain users of the LinchPin API from gathering results from the Ansible runs. To that end, the _invoke_playbook method was reworked to return the results in a list of TaskResult objects.

LinchPin 1.0.1 RELEASE NOTES

LinchPin 1.0.1 is a bugfix release

Bug Fixes

	linchpin destroy duffy error after 1.0 upgrade [https://github.com/CentOS-PaaS-SIG/linchpin/issues/263]

	1.0 error with linchpin init/linchpin up [https://github.com/CentOS-PaaS-SIG/linchpin/issues/264]

	linchpin rise/up error since upgrade to 1.0.0 [https://github.com/CentOS-PaaS-SIG/linchpin/issues/267]

	libvirt provisioning does not work on centos/rhel machines [https://github.com/CentOS-PaaS-SIG/linchpin/issues/269]

	Unable to get topology file to pass schema validation [https://github.com/CentOS-PaaS-SIG/linchpin/issues/271]

	Authorization failing with linchpin 1.0.0 [https://github.com/CentOS-PaaS-SIG/linchpin/issues/274]

	Inventory generation fails as resource outputs are not generated [https://github.com/CentOS-PaaS-SIG/linchpin/issues/275]

Enhancements

	Make a default path for credentials [https://github.com/CentOS-PaaS-SIG/linchpin/issues/280]

LinchPin 1.0.2 RELEASE NOTES

LinchPin 1.0.2 is a bugfix release

Bug Fixes

	Make a default path for credentials [https://github.com/CentOS-PaaS-SIG/linchpin/issues/279]

	Updates to beaker provisioner [https://github.com/CentOS-PaaS-SIG/linchpin/pull/288]

	Recommended fixes from landscape.io [https://github.com/CentOS-PaaS-SIG/linchpin/pull/290]

	Remove .yaml from output resources files [https://github.com/CentOS-PaaS-SIG/linchpin/pull/298]

	installing deps requires -y flag [https://github.com/CentOS-PaaS-SIG/linchpin/pull/308]

Enhancements

	More documentation updates [https://github.com/CentOS-PaaS-SIG/linchpin/pull/281]

LinchPin 1.0.0 ROADMAP

Enhancements

	Better python package
- Reduce noise by containing the library under the linchpin namespace

	Beaker provisioner

	Convert from lincnpin_config.yml to linchpin.conf
- Add tooling to load configurations from linchpin.conf

	LinchPin Context to manage environment

	Unit Tests
- Testing of python libraries, including API, Context, CLI, etc.
- Created dummy provisining provider to perform testing

	Hooks
- pre / post hooks for both up and destroy actions

	Direct credential management
- All core cloud providers (gce, ec2, openstack) can authenticate using their traditional method
- An override can be passed via the CLI/API using the variable creds_path

	Customizable workspace in the CLI/API
- LinchPin now provides a workspace option. The PinFile, topology, layout and hooks live here.

	Context provides logging to a centralized log file, console (stdout/stderr), or both

	OpenShift provisioning provider

	

Documentation Improvements

	Beaker topology

	Inline API documentation now on readthedocs

Bug Fixes

	#177 Missing dependency for python-krbV

While this bug indicated wontfix and was closed, the improvement was instead to add functionality to the setup.py. This created the ability to ship extra dependencies by simply performing a pip install linchpin[krbV].

	#202 linchpin-config.yml inconsistencies

This lead to the rework of the configuration into linchpin.conf, and the Context objects

	#225 Linchpin multiple targets no longer work

When running linchpin up/destroy actions, if no target(s) are passed, all targets are acted upon. This failed after reworking the linchpin.conf and adding the Context object.

	#226 Returned results from API calls (up and destroy) when console set to False does not contain failures

This bug prevented certain users of the LinchPin API from gathering results from the Ansible runs. To that end, the _invoke_playbook method was reworked to return the results in a list of TaskResult objects.

LinchPin 1.1.x ROADMAP - July 31, 2017?

More Unit Tests #257

	coverage

	flake8

	cli fail testing

	api fail testing

	linchpin-lib pass/fail testing

Integration Testing #247

	testing of each provider set in core (openstack, ec2, gce, libvirt)

Regression Testing

	More research needed

Bug Fixes from 1.0.0 release

It’s inevitable, there will be many bugs to fix. :)

Cloud-Init functionality #111 #148

	Libvirt

	openstack userdata tooling

	aws userdata??

	gce userdata??

State Logging

	Report transitioning between states
- (prehooks -> up -> posthooks -> resources -> postreshooks? -> inventory_generation -> postgenhooks)

Output / Exception Handling

	The basic exception handling is in place. CLI output works, but isn’t perfect.

	Refine the API to return messages, let the interface handle how to display them.

Investigate dependency pinning/Investigate reducing dependencies (separate packages??)

	There are a lot of packages that can probably be removed

	Break out drivers to a separate package (core pkgs may become linchpin-drivers-core or somesuch)

	Create packages for linchpin library and linchpin-cli
- Already have some of this, but it’s not clean)

Upgrade to Ansible 2.3

	Handle new magic_vars

	Verify/Adapt any API changes work in LinchPin

Python 3 conversion

Ansible is ready (pretty much), so should we be.

LinchPin 1.2.x ROADMAP - October 1, 2017??

Authentication Driver for Libvirt and others

	Libvirt – PolicyKit/SSH/tcp integration/sudo (become) methods

Reworking Schema

	Use cerberus on a driver by driver basis to validate schemas

Zuul Integration

Sean Myers is working on this

New providers

	Azure

	RHEV RHEL

	Foreman

Rework on Roles

	Small playbooks that do provision/teardown per provider

	Create a plugin model for ephemeral services

Split out Linchpin API/REST API from cli

	API becomes linchpin pkg (libraries and playbooks)

	CLI becomes linchpin-cli pkg (just cli tooling)

Hooks

	Built-in Hooks
- inventory generator
- resource outputter
- schema validation

	Global hooks functionality

	State tracking:
- on_success/on_failure flags for hooks and actions
- Implement retry in hooks on failure

REST Service

	simple rest service interface

LinchPin 1.3.x ROADMAP - January 1, 2018???

Network Provisioning

	Teardown options

Asynchronous Target Provisioning

	Using a distributed queue to provision targets and get their states/outputs ??? (more research needed)

Linchpin Status tracking

	Use a database to track status multiple targets.

	Give unique identifiers to target/topology/layout triples for naming

Provisioning Libvirt virtual machines with LinchPin

LinchPin can be used to provision Libvirt VMs. If you need to familiarize yourself with Libvirt, read this [https://libvirt.org/docs.html]. Now let’s step through the process of creating a new workspace for provisioning Libvirt

Fetch

It is possible that you want to access a workspace that already exists. If that workspace exists online, linchpin fetch can be used to clone the repository. For example, the OpenShift on OpenStack example from release 1.7.2 in the linchpin repository can be cloned as follows:

$ linchpin fetch --root docs/source/examples/workspaces openshift-on-openstack --branch 1.7.2 --dest ./fetch-example https://github.com/CentOS-PaaS-SIG/linchpin

You can even choose to fetch only a certain component of the workspace. For example, if you only wish to fetch the topologies you can add --type topologies. If you were able to fetch a complete workspace, you can skip to Up

Initialization

Assuming you are creating a workspace from scratch, you can run linchpin init to initialize a workspace. The following line of code will create a linchpin.conf, dummy PinFile, and README.rst in a directory called “simple”

$ linchpin init simple

The PinFile contains a single target, called simple, which contains a topology but no layout. A group of related provisioning tasks is called a target. Each target has a topology, which can contain many resource groups, and an optional layout. We’ll explain what each of those means later on in further detail

Creating a Topology

Now that we have a PinFile, its time to add the code for a Libvirt VM. Edit your PinFile so it looks like the one below.

simple:
 topology:
 topology_name: simple
 resource_groups:
 - resource_group_name: libvirt_simple
 resource_group_type: libvirt
 resource_definitions:
 - name: simple_vm
 role: libvirt_node
 vcpus: 1
 memory: 2048
 count: 1

There are a number of other fields available for these two roles. Information about those fields as well as the other Libvirt roles can be found on the Libvirt provider page.

A resource group is a group of resources related to a single provider. In this example we have a Libvirt resource group that defines two different types of Libvirt resources. We could also define an AWS resource group below it that provisions a handful of EC2 nodes. A single resource group can contain many resource definitions. A resource definition details the requirements for a specific resource. We could add another resource definition to this topology to create a network for our Libvirt VMs. Multiple resources can be provisioned from a single resource definition by editing the count field, but all non-unique properties of the resources will be identical. So the amount of memory will remain the same but each node will have a unique name. The name will be {{ name }}_0, {{ name }}_1, etc. from 0 to count.

Customizing a Machine Image

virt-customize or cloud-init can be used to customize a machine image before provisioning. This can be used to, for example, configure a login user before provisioning.

Below is an example of virt-customize and cloud-init

cloud_config:
 virt_type: cloud-init
 users:
 - name: test
 gecos: test
 groups: wheel
 sudo: ALL=(ALL) NOPASSWD:ALL
 - name: someuser
 gecos: someuser
 groups: wheel
 sudo: ALL=(ALL) NOPASSWD:ALL

cloud_config:
 virt_type: virt-customize
 root_password: "testrootpwd" # insecure plaintext password
 run_script: "/home/srallaba/workspace/lp_ws/virt_customize/test.sh"
 first_boot_commands:
 - "echo \"this is created by the linchpin first_boot_commands\" >> first_boot_commands.txt"
 users:
 - name: test
 gecos: test
 groups: wheel
 - name: testuser2
 groups: wheel
 password: 1ZA8hoL7w$eZexnQWoXTZajtfKGYy4f. # encrypted password for "TestPWD"
 - name: someotheruser
 groups: wheel
 inject_ssh_keys: true # by default linchpin generated libvirt key is injected.
 - name: srallaba
 groups: wheel
 inject_ssh_keys: true # by default linchpin generated libvirt key is injected.
 packages:
 - gcc
 - openssh-server
 run_commands:
 - "echo \"hello world\""
 - "echo \"This is a file generated by run_commands parameters\" > /tmp/run_commands.txt"

Credentials

Finally, we need to add credentials to the resource group.

Libvirt doesn’t require credentials via LinchPin. Multiple options are
available for authenticating against a Libvirt daemon (libvirtd). Most methods
are detailed here [https://libvirt.org/auth.html]. If desired, the uri for
the resource can be set using one of these mechanisms.

By default, however, libvirt requires sudo access to use. To allow users
without sudo access to provision libvirt instances, run the following commands
on the target machine:

	Create the libvirt group if it does not exist

$ getent group | grep libvirt
$ groupadd -g 7777 libvirt

	Add user account to libvirt and qemu groups

$ usermod -aG libvirt,qemu <user>

	Edit libvirtd configuration to add group

$ cat <<EOF >>/etc/libvirt/libvirtd.conf
unix_sock_group = "libvirt"
unix_sock_rw_perms = "0770"
EOF

	Restart the libvirtd daemon

$ systemctl restart libvirtd

The next time the user logs in, they will be able to provision libvirt disks
without sudo access

Creating a Layout

LinchPin can use layouts to describe what an Ansible inventory might look like after provisioning. Layouts can include information such as IP addresses, zones, and FQDNs. Under the simple key, put the following data:

layout:
 inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 server:
 count: 1
 host_groups:
 - frontent
 host_groups:
 all:
 vars:
 ansible_user: root
 frontend:
 vars:
 ansible_ssh_common_args: -o StrictHostKeyChecking=no

After provisioning the hosts, LinchPin will through each host type in the inventory_layout, pop count hosts off of the list, and add them to the relevant host groups. The host_groups section of the layout is used to set environment variables for each of the hosts in a given host group

Up

Once the resources have been defined, LinchPin can be run as follows:

$ linchpin --workspace . -vv up simple

The --workspace flag references the relevant workspace. By default, the workspace is
the current working directory. If the PinFile has a name (or path) other than {{workspace}}/PinFile,
the --pinfile flag can override that. Finally, -vv sets a verbosity level of 2. As
with Ansible, the verbosity can be set between 0 and 4.

If the provisioning was successful, you should see some output at the bottom that looks something like this:

ID: 122
Action: up

Target Run ID uHash Exit Code

simple 1 3a0c59 0

You can use that uhash value to get the inventory generated according to the layout we discussed above. The file will be titled inventories/${target}-${uhash} but you can change this naming schema by editing the inventory_file field in the inventory_layout section of the layout. When linchpin up is run, each target will generate its own inventory layout. The inventories folder and inventory_path can also be set in the evars section of linchpin.conf

Destroy

At some point you’ll no longer need the machines you provisioned. You can destroy the provisioned machines with linchpin destroy. However, you may not want to remove every single target from your last provision. For example, lets say you ran the simple provision above, then ran a few others. You could use the transaction ID, labeled “ID” above, to do so.

$ linchpin -vv destroy -t 122

You may also have provisioned multiple targets at once. If you only want to destroy one of them, you can do so with the name of the target and the run ID.

$ linchpin -vv destroy -r 1 simple

Journal

Each time you provision or destroy resources with LinchPin, information about the run is stored in the Run Database, or RunDB. Data from the RunDB can be printed using linchpin journal. This allows you to keep track of which resources you have provisioned but haven’t destroyed and gather the transaction and run IDs for those resources. To list each resource by target, simply run:

$ linchpin journal

Target: simple
run_id action uhash rc
--
2 destroy bb8064 0
1 up bb8064 0

Target: beaker-openstack
run_id action uhash rc
--
2 destroy b1e364 2
1 up b1e364 2

Target: os-subnet
run_id action uhash rc
--
3 destroy c619ac 0
2 up c619ac 0
1 destroy ab9d81 0

As you can see, linchpin printed out the run data for the simple target that we provisioned and destroyed above, but also printed out information for a number of other targets which had been provisioned recently. You can provide a target as an argument to only print out the given target. You can also group by transaction id with the flag --view tx. Click here to read more about linchpin journal

Template Data

PinFiles in LinchPin can be templated. Templates are parsed with Jinja2, so the syntax is exactly the same.

Templates in a PinFile

To get started, let’s take a look at the PinFile below.

```

Here we have a simple PinFile used to provision an AWS EC2 instance.  The flavor field makes use of basic templating.  The double curly brackets tell the template parser that “flavor” is a variable which can be found in the template data.  We cover template data more in the next section.  The image field expands upon this with a filter.  Filters modify variables and are separated from the variable by a pipe.  In this case, the fitter is the default() filter, which provides a value for the field if the variable is not defined.

Finally, we can see templates used to fill in the credentials section of the PinFile.  In this case, we have a conditional.  If the credentials are defined in template data, we can use those values to fill in the credentials.  Otherwise, we have default credentials we can use.  if statements and for loops are defined with a {% ... %} syntax. Why can’t the default filter be used in this example?  Why can’t we simply use the line filename: {{ credentials.filename | default('aws.key') }} and do the same for the profile?  In this version, the template parser will fall back to the default field if credentials.filename is not defined.  However, if the credentials section is not defined at all, an error will be thrown.  Because of this, we need to use an if statement here to correctly handle a case in which no credentials are defined in the template data.

This example only demonstrates the use of template data in a topology, but it can also be used in the layout or cfgs sections




Template Data

Where does the template data come from?  The template data can either be declared inline or defined in a file.  The data is supplied to linchpin with the --template-data or -d flags.  The template data can be formatted as JSON or as yaml.  Below is an example of a template file, called data.yml, that goes with the PinFile above

This file does not define an image, so LinchPin will fall back on the default.  However, the flavor and credentials fields will be pulled from the above file.  To run LinchPin with a file, run the command below:

Notice the @ prepended to the filename.  This is used so that the template engine knows that this is a filename and not raw data.  Our example topology requires the user to provide a flavor in template data but doesn’t actually require anything else.  In a case as simple as this, we can provide the data inline.

That should be enough to get started.  To read more about Jinja2 syntax, go here [http://jinja.pocoo.org/docs/2.10/templates/]







          

      

      

    

  

    
      
          
            
  
Credentials

Finally, we need to add credentials to the resource group.  OpenStack provides several ways to provide credentials. LinchPin supports some of these methods for passing credentials for use with OpenStack resources.





          

      

      

    

  

    
      
          
            
  
Destroy

At some point you’ll no longer need the machines you provisioned.  You can destroy the provisioned machines with linchpin destroy.  However, you may not want to remove every single target from your last provision.  For example, lets say you ran the simple provision above, then ran a few others.  You could use the transaction ID, labeled “ID” above, to do so.

$ linchpin -vv destroy -t 122





You may also have provisioned multiple targets at once.  If you only want to destroy one of them, you can do so with the name of the target and the run ID.

$ linchpin -vv destroy -r 1 simple









          

      

      

    

  

    
      
          
            
  
Fetch

It is possible that you want to access a workspace that already exists.  If that workspace exists online, linchpin fetch can be used to clone the repository. For example, the OpenShift on OpenStack example from release 1.7.2 in the linchpin repository can be cloned as follows:

$ linchpin fetch --root docs/source/examples/workspaces openshift-on-openstack --branch 1.7.2 --dest ./fetch-example https://github.com/CentOS-PaaS-SIG/linchpin





You can even choose to fetch only a certain component of the workspace.  For example, if you only wish to fetch the topologies you can add --type topologies.  If you were able to fetch a complete workspace, you can skip to `Up`_





          

      

      

    

  

    
      
          
            
  
Initialization

Assuming you are creating a workspace from scratch, you can run linchpin init to initialize a workspace.  The following line of code will create a linchpin.conf, dummy PinFile, and README.rst in a directory called “simple”

$ linchpin init simple





The PinFile contains a single target, called simple, which contains a topology but no layout.  A group of related provisioning tasks is called a target.  Each target has a topology, which can contain many resource groups, and an optional layout.  We’ll explain what each of those means later on in further detail





          

      

      

    

  

    
      
          
            
  
Provisioning {{ provider }} with linchpin

LinchPin can be used to provision compute instances on OpenStack.  If you need to familiarize yourself with OpenStack Server, read this [https://developer.openstack.org/api-guide/compute/server_concepts.html]. Now let’s step through the process of creating a new workspace for provisioning {{ provider }}





          

      

      

    

  

    
      
          
            
  
Journal

Each time you provision or destroy resources with LinchPin, information about the run is stored in the Run Database, or RunDB.  Data from the RunDB can be printed using linchpin journal.  This allows you to keep track of which resources you have provisioned but haven’t destroyed and gather the transaction and run IDs for those resources.  To list each resource by target, simply run:

$ linchpin journal

Target: simple
run_id      action           uhash              rc
--------------------------------------------------
2         destroy          bb8064               0
1              up          bb8064               0

Target: beaker-openstack
run_id      action           uhash              rc
--------------------------------------------------
2         destroy          b1e364               2
1              up          b1e364               2

Target: os-subnet
run_id      action           uhash              rc
--------------------------------------------------
3         destroy          c619ac               0
2              up          c619ac               0
1         destroy          ab9d81               0





As you can see, linchpin printed out the run data for the simple target that we provisioned and destroyed above, but also printed out information for a number of other targets which had been provisioned recently.  You can provide a target as an argument to only print out the given target.  You can also group by transaction id with the flag --view tx.  Click here to read more about linchpin journal





          

      

      

    

  

    
      
          
            
  
Creating a Layout

LinchPin can use layouts to describe what an Ansible inventory might look like after provisioning.  Layouts can include information such as IP addresses, zones, and FQDNs.  Under the simple key, put the following data:

---
layout:
  inventory_layout:
    vars:
      hostname: __IP__
    hosts:
      server:
        count: 1
        host_groups:
          - frontent
    host_groups:
      all:
        vars:
          ansible_user: root
        frontend:
          vars:
            ansible_ssh_common_args: -o StrictHostKeyChecking=no





After provisioning the hosts, LinchPin will through each host type in the inventory_layout, pop count hosts off of the list, and add them to the relevant host groups.  The host_groups section of the layout is used to set environment variables for each of the hosts in a given host group





          

      

      

    

  

    
      
          
            
  
Creating a Topology

Now that we have a PinFile, its time to add the code for an OpenStack server.  Edit your PinFile so it looks like the one below.

simple:
  topology:
        {{ topology data }}





There are a number of other fields available for these two roles.  Information about those fields as well as the other OpenStack roles can be found on the {{ provider }} provider page.

A resource group is a group of resources related to a single provider.  In this example we have an {{ provider }} resource group that defines two different types of {{ provider }} resources.  We could also define an AWS resource group below it that provisions a handful of EC2 nodes.  A single resource group can contain many resource definitions. A resource definition details the requirements for a specific resource.  Multiple resources can be provisioned from a single resource definition by editing the count field, but all non-unique properties of the resources will be identical.





          

      

      

    

  

    
      
          
            
  
Up

Once the resources have been defined, LinchPin can be run as follows:

$ linchpin --workspace . -vv up simple





The --workspace flag references the relevant workspace.  By default, the workspace is
the current working directory.  If the PinFile has a name (or path) other than {{workspace}}/PinFile,
the --pinfile flag can override that.  Finally, -vv sets a verbosity level of 2.  As
with Ansible, the verbosity can be set between 0 and 4.

If the provisioning was successful, you should see some output at the bottom that looks something like this:

ID: 122
Action: up

Target                  Run ID  uHash   Exit Code
-------------------------------------------------
simple                     1    3a0c59          0





You can use that uhash value to get the inventory generated according to the layout we discussed above.  The file will be titled inventories/${target}-${uhash} but you can change this naming schema by editing the inventory_file field in the inventory_layout section of the layout.  When linchpin up is run, each target will generate its own inventory layout.  The inventories folder and inventory_path can also be set in the evars section of linchpin.conf





          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Introduction to LinchPin
        


        		
          Getting Started
        


        		
          Documentation
          
            		
              Installation
              
                		
                  Docker Installation
                


                		
                  Bare Metal Installation
                


                		
                  Minimal Software Requirements
                


                		
                  Installing LinchPin
                


                		
                  Installing on Fedora 30+
                


                		
                  Installing on RHEL 7.4
                


                		
                  Source Installation
                


                		
                  linchpin setup : Automatic Dependency installation:
                


              


            


            		
              Running LinchPin
              
                		
                  Running the linchpin command
                


                		
                  Workspaces
                


                		
                  Resources
                


                		
                  Provisioning (up)
                


                		
                  Teardown (destroy)
                


                		
                  Authentication
                


              


            


            		
              General Configuration
              
                		
                  Adding/Overriding a Section
                


                		
                  Overriding a configuration item
                


                		
                  Useful Configuration Options
                


              


            


            		
              Commands (CLI)
              
                		
                  linchpin init
                


                		
                  linchpin up
                


                		
                  linchpin destroy
                


                		
                  linchpin journal
                


                		
                  linchpin fetch
                


                		
                  linchpin validate
                


                		
                  Validate Command
                


                		
                  linchpin setup
                


                		
                  linchpin ssh
                


              


            


            		
              Managing Resources
              
                		
                  PinFiles
                


                		
                  Topologies
                


                		
                  Layouts
                


              


            


            		
              Examples for all Providers
              
                		
                  OpenStack
                


                		
                  Libvirt
                


                		
                  Amazon Web Services
                


                		
                  Azure
                


                		
                  Google Cloud Platform
                


                		
                  VMware
                


                		
                  Beaker
                


                		
                  Duffy
                


                		
                  oVirt
                


                		
                  Docker
                


                		
                  Openshift
                


              


            


            		
              Advanced Topics
              
                		
                  Inventory Layouts
                


                		
                  The RunDB Explained
                


                		
                  RunDB Drivers
                


                		
                  Context Distiller
                


                		
                  PinFile Configs
                


              


            


          


        


        		
          Developer Information
          
            		
              Python API Reference
              
                		
                  Linchpin API and Context Modules
                


                		
                  LinchPin Command-Line API
                


                		
                  LinchPin Command Line Shell implementation
                


                		
                  LinchPin Hooks API
                


                		
                  LinchPin Extra Modules
                


              


            


            		
              Developing LinchPin
              
                		
                  Checking out the linchpin code
                


                		
                  Working on a feature or bug
                


                		
                  Creating a Pull Request
                


                		
                  Updating a Pull Request
                


                		
                  Merging a Pull Request
                


              


            


          


        


        		
          FAQs
        


        		
          Community
        


        		
          Glossary
        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





