

LinchPin documentation

About LinchPin

Welcome to the LinchPin documentation!

LinchPin is a hybrid cloud orchestration tool. Its intended purpose is managing cloud resources across multiple infrastructures. These resources can be provisioned, decommissioned, and configured all using a topology file and a simple command-line interface.

Additionally, LinchPin provides a Python API (and soon a RESTful API) for managing resources. The cloud management component is backed by Ansible <https://ansible.com>. The front-end API manages the interface between the command line (or other interfaces) and calls to the Ansible API.

This documentation covers the current released version of LinchPin (1.0.3). For recent features, we attempt to note in each section the version of LinchPin where the feature was added.

	Introduction

	Installation
	Minimal Software Requirements

	Installing LinchPin

	Getting Started
	Foreword

	Terminology

	Running linchpin

	Configuration
	General Configuration

	Topologies

	Layouts

	Ansible Variables

	Example Topologies
	AWS Topologies

	Openstack Topologies

	Steps to provision Single Host

	OpenShift Topologies

	Gcloud Topologies

	Duffy Topologies

	Beaker Topologies

	Libvirt Topologies

	Hybrid Topologies

	Beaker Topologies

	oVirt Topologies

	Python API Reference
	linchpin module

	linchpin.api module

	linchpin.cli module

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Before getting heavily into LinchPin, let’s cover some of the basics. The topics below will cover everything needed to get going with LinchPin. For more advanced topics, refer to the main documentation page.

	Installation

	Getting Started

	Configuration

See also

	User Mailing List [https://www.redhat.com/mailman/listinfo/linchpin]

	Subscribe and participate. A great place for Q&A

	irc.freenode.net [http://irc.freenode.net]

	#linchpin IRC chat channel

Installation

Topics

	Installation
	Minimal Software Requirements

	Installing LinchPin
	Source Installation

Currently, LinchPin can be run from any machine with Python 2.6+ (Python 3.x is currently experimental), and requires Ansible 2.2.1. There are many other dependencies, depending on the provider. The core providers are OpenStack, Amazon EC2, and Google Compute Cloud. If enabled on the host system, Libvirt can also be used out of the box.

Refer to your specific operating system for directions on the best method to install Python, if it is not already installed. Many modern operating systems will have Python already installed. This is typically the case in all versions of Linux and OS X, but the version present might be older than the version needed for use with Ansible. You can check the version by typing python --version.

If the system installed version of Python is older than 2.6, many systems will provide a method to install updated versions of Python in parallel to the system version (eg. virtualenv).

Minimal Software Requirements

As LinchPin is heavily dependent on Ansible, this is a core requirement. Beyond installing Ansible, there are several packages that need to be installed:

* libffi-devel
* openssl-devel
* libyaml-devel
* gmp-devel
* libselinux-python
* make

For Fedora/CentOS/RHEL the necessary packages should be installed.

$ sudo yum install python-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel libselinux-python make

Note

Fedora will present an output suggesting the use of dnf as a replacement for yum.

Installing LinchPin

Note

Currently, linchpin is not packaged for any major Operating System. If you’d like to contribute your time to create a package, please contact the linchpin mailing list.

Create a virtualenv to install the package using the following sequence of commands (requires virtualenvwrapper).

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip install linchpin
..snip..

To deactivate the virtualenv.

(linchpin) $ deactivate
$

Then reactivate the virtualenv.

$ workon linchpin
(linchpin) $

If testing or docs is desired, additional steps are required.

(linchpin) $ pip install linchpin[docs]
(linchpin) $ pip install linchpin[tests]

Source Installation

As an alternative, LinchPin can be installed via github. This may be done in order to fix a bug, or contribute to the project.

(linchpin) $ git clone git://github.com/CentOS-PaaS-SIG/linch-pin
..snip..
(linchpin) $ pip install ./linch-pin

See also

	User Mailing List [https://www.redhat.com/mailman/listinfo/linchpin]

	Subscribe and participate. A great place for Q&A

	irc.freenode.net [http://irc.freenode.net]

	#linchpin IRC chat channel

Getting Started

Topics

	Getting Started
	Foreword

	Terminology
	Topology

	Inventory Layout

	PinFile

	Running linchpin
	Initialization (init)

	Provisioning (up)

	Teardown (destroy)

	Multi-Target Actions

Foreword

Now that LinchPin is installed according to Installation, it is time to see how it works. This guide is essentially a quick start guide to getting up and running with LinchPin.

LinchPin is a command-line utility, a Python API, and Ansible playbooks. This document focuses on the command-line interface.

Terminology

LinchPin, while it attempts to be a simple tool for provisioning resources, still does have some complexity. To that end, this section attempts to define the minimal bits of terminology needed to understand how to use the linchpin command-line utility.

Topology

The topology is a set of rules, written in YAML, that define the way the provisioned systems should look after executing linchpin. Generally, the topology and topology_file values are interchangeable, except where the YAML is specifically indicated. A simple dummy topology is shown here.

topology_name: "dummy_cluster" # topology name
resource_groups:
 -
 resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 -
 name: "web"
 type: "dummy_node"
 count: 3

This topology describes a set of three (3) dummy systems that will be provisioned when linchpin up is executed. The names of the systems will be ‘web_#.example.net’, where # indicates the count (usually 0, 1, and 2). Once provisioned, the resources will be output and stored for reference. The output resources data can then be used to generated an inventory, or passed as part of a linchpin destroy action.

Inventory Layout

The inventory_layout or layout mean the same thing, a YAML definition for providing an Ansible static inventory file, based upon the provided topology. A YAML layout is stored in a layout_file.

inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 example-node:
 count: 3
 host_groups:
 - example
 host_groups:
 example:
 vars:
 test: one

The above YAML allows for interpolation of the ip address, or hostname as a component of a generated inventory. A host group called example will be added to the Ansible static inventory, along with a section called example:vars containing test = one. The resulting static Ansible inventory is shown here.

[example:vars]
test = one

[example]
web-2.example.net hostname=web-2.example.net
web-1.example.net hostname=web-1.example.net
web-0.example.net hostname=web-0.example.net

[all]
web-2.example.net hostname=web-2.example.net
web-1.example.net hostname=web-1.example.net
web-0.example.net hostname=web-0.example.net

PinFile

A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a resource for provisioning. An example Pinfile is shown.

dummy1:
 topology: dummy-cluster.yml
 layout: dummy-layout.yml

The PinFile collects the given topology and layout into one place. Many targets can be referenced in a single PinFile.

The target above is named dummy1. This target is the reference to the topology named dummy-cluster.yml and layout named dummy-layout.yml. The PinFile can also contain definitions of hooks that can be executed at certain pre-defined states.

Running linchpin

As stated above, this guide is about using the command-line utility, linchpin. First off, simply execute linchpin to see some options.

$ linchpin
Usage: linchpin [OPTIONS] COMMAND [ARGS]...

 linchpin: hybrid cloud orchestration

Options:
 -c, --config PATH Path to config file
 -w, --workspace PATH Use the specified workspace if the familiar Jenkins
 $WORKSPACE environment variable is not set
 -v, --verbose Enable verbose output
 --version Prints the version and exits
 --creds-path PATH Use the specified credentials path if WORKSPACE
 environment variable is not set
 -h, --help Show this message and exit.

Commands:
 init Initializes a linchpin project.
 up Provisions nodes from the given target(s) in...
 destroy Destroys nodes from the given target(s) in...

What can be seen immediately is a simple description, along with options and arguments that can be passed to the command. The three commands found near the bottom of this help are where the focus will be for this document.

Initialization (init)

Running linchpin init will generate the directory structure needed, along with an example PinFile, topology, and layout files. One important option here, is the –workspace. When passing this option, the system will use this as the location for the structure. The default is the current directory.

$ export WORKSPACE=/tmp/workspace
$ linchpin init
PinFile and file structure created at /tmp/workspace
$ cd /tmp/workspace/
$ tree
.
├── credentials
├── hooks
├── inventories
├── layouts
│ └── example-layout.yml
├── PinFile
├── resources
└── topologies
 └── example-topology.yml

At this point, one could execute linchpin up and provision a single libvirt virtual machine, with a network named linchpin-centos71. An inventory would be generated and placed in inventories/libvirt.inventory. This can be known by reading the topologies/example-topology.yml and gleaning out the topology_name value.

Provisioning (up)

Once a PinFile, topology, and optionally a layout are in place, provisioning can happen.

Note

For this section, the dummy tooling will be used as it is much
simpler and doesn’t require anything extra to be configured. The dummy
provider creates a temporary file, which represents provisioned hosts.
If the temporary file does not have any data, hosts have not been
provisioned, or they have been recently destroyed.

The dummy topology, layout, and PinFile are shown above in the appropriate sections. The tree would be very simple.

$ tree
.
├── inventories
├── layouts
│ └── dummy-layout.yml
├── PinFile
├── resources
└── topologies
 └── dummy-cluster.yml

Performing the command linchpin up should generate resources and inventory files based upon the topology_name value. In this case, is dummy_cluster.

$ linchpin up
target: dummy1, action: up

$ ls {resources,inventories}/dummy*
inventories/dummy_cluster.inventory resources/dummy_cluster.output

To verify resources with the dummy cluster, check /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-0.example.net
web-1.example.net
web-2.example.net

This is reflected in both the resources (not shown) and inventory files.

[example:vars]
test = one

[example]
web-2.example.net hostname=web-2.example.net
web-1.example.net hostname=web-1.example.net
web-0.example.net hostname=web-0.example.net

[all]
web-2.example.net hostname=web-2.example.net
web-1.example.net hostname=web-1.example.net
web-0.example.net hostname=web-0.example.net

Teardown (destroy)

As expected, LinchPin can also perform teardown of resources. A teardown action generally expects that resources have been provisioned. However, because Ansible is idempotent, linchpin destroy will only check to make sure the resources are up. Only if the resources are already up will the teardown happen.

The command linchpin destroy will either use resources and/or topology files to determine the proper teardown procedure. The dummy Ansible role does not use the resources, only the topology during teardown.

$ linchpin destroy
target: dummy1, action: destroy

$ cat /tmp/dummy.hosts
-- EMPTY FILE --

Note

The teardown functionality is slightly more limited around ephemeral
resources, like networking, storage, etc. It is possible that a network
resource could be used with multiple cloud instances. In this way,
performing a linchpin destroy does not teardown certain resources. This
is dependent on each providers implementation.

See specific implementations for each of the providers [https://github.com/CentOS-PaaS-SIG/linch-pin/tree/develop/linchpin/provision/roles].

Multi-Target Actions

LinchPin can provision or teardown any number of resources. If a PinFile has multiple targets, and is called without a target name, all targets will be executed. Given this PinFile.

example:
 topology: example-topology.yml
 layout: example-layout.yml

example2:
 topology: example2-topology.yml
 layout: example2-layout.yml

dummy1:
 topology: dummy-cluster.yml
 layout: dummy-layout.yml

A call to linchpin up would provision and generate an Ansible static inventory for each target.

$ linchpin up
target: dummy1, action: up

target: example2, action: up

target: example, action: up

See also

	Command-Line Reference

	Linchpin Command-Line Interface

	User Mailing List [https://www.redhat.com/mailman/listinfo/linchpin]

	Subscribe and participate. A great place for Q&A

	irc.freenode.net [http://irc.freenode.net]

	#linchpin IRC chat channel

Configuration

Before resources can be provisioned in any of the environments through the use of linchpin, the environment must be configured
to specify the resources required.

	General Configuration

	Topologies

	Layouts

	Ansible Variables

General Configuration

Managing LinchPin requires a few configuration files. Beyond linchpin.conf,
there are a few other configurations that need to be created. When running linchpin,
four different locations are checked for linchpin.conf files.
Files are checked in the following order:

	linchpin/library/path/linchpin.conf

	/etc/linchpin.conf

	~/.config/linchpin/linchpin.conf

	path/to/workspace/linchpin.conf

The linchpin configuration parser supports overriding and extension of
configurations. Therefore, after the files are checked for existence, the
existing configuration files are read and if linchpin finds two or more
different configuration files to contain the same configuration section header,
the header that was parsed more recently will provide the configuration for that
section. Therefore, if the user wants to add their own configurations to their
linchpin workpace, the the user should add their configurations to a
linchpin.conf file in the root of their workspace. This way, their file will be
parsed last and their configurations will take precedence over all other
configurations.

To add your own configurations, simply create a linchpin.conf file in the root
of your workspace using your preferred text editor and write configuration in a
.ini style. Here’s an example:

	::

	[Section Header]
key1 = value1
key2 = value2

Topics

	General Configuration
	Workspace

	Initialization

	PinFile

	Topologies

	Inventory Layouts

Workspace

Initialization

Running linchpin init will generate the directory structure needed, along with an example PinFile, topology, and layout files. One important option here, is the –workspace. When passing this option, the system will use this as the location for the structure. The default is the current directory.

$ export WORKSPACE=/tmp/workspace
$ linchpin init
PinFile and file structure created at /tmp/workspace
$ cd /tmp/workspace/
$ tree
.
├── credentials
├── hooks
├── inventories
├── layouts
│ └── example-layout.yml
├── PinFile
├── resources
└── topologies
 └── example-topology.yml

At this point, one could execute linchpin up and provision a single libvirt virtual machine, with a network named linchpin-centos71. An inventory would be generated and placed in inventories/libvirt.inventory. This can be known by reading the topologies/example-topology.yml and gleaning out the topology_name value.

PinFile

A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a resource for provisioning. An example Pinfile is shown.

dummy1:
 topology: dummy-cluster.yml
 layout: dummy-layout.yml

The PinFile collects the given topology and layout into one place. Many targets can be referenced in a single PinFile.

The target above is named dummy1. This target is the reference to the topology named dummy-cluster.yml and layout named dummy-layout.yml. The PinFile can also contain definitions of hooks that can be executed at certain pre-defined states.

Topologies

The topology is a set of rules, written in YAML, that define the way the provisioned systems should look after executing linchpin. Generally, the topology and topology_file values are interchangeable, except where the YAML is specifically indicated. A simple dummy topology is shown here.

topology_name: "dummy_cluster" # topology name
resource_groups:
 -
 resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 -
 name: "web"
 type: "dummy_node"
 count: 3

This topology describes a set of three (3) dummy systems that will be provisioned when linchpin up is executed. The names of the systems will be ‘web_#.example.net’, where # indicates the count (usually 0, 1, and 2). Once provisioned, the resources will be output and stored for reference. The output resources data can then be used to generated an inventory, or passed as part of a linchpin destroy action.

Inventory Layouts

The inventory_layout or layout mean the same thing, a YAML definition for providing an Ansible static inventory file, based upon the provided topology. A YAML layout is stored in a layout_file.

inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 example-node:
 count: 3
 host_groups:
 - example
 host_groups:
 example:
 vars:
 test: one

The above YAML allows for interpolation of the ip address, or hostname as a component of a generated inventory. A host group called example will be added to the Ansible static inventory, along with a section called example:vars containing test = one. The resulting static Ansible inventory is shown here.

[example:vars]
test = one

[example]
web-2.example.net hostname=web-2.example.net
web-1.example.net hostname=web-1.example.net
web-0.example.net hostname=web-0.example.net

[all]
web-2.example.net hostname=web-2.example.net
web-1.example.net hostname=web-1.example.net
web-0.example.net hostname=web-0.example.net

Topologies

A topology is a specification of which resources from which environments
are being requested from a linchpin run. Since each environment has different sets
of requirements, the exact values and structure of a topology file will vary based
on where resources are to be provisioned. In this document some broad discussion of
topologies will be addressed. More extensive examples pertaining to specific environments
will be given in a separate section of the documentation.

Topology

Broadly speaking, a linchpin topology file is a list of resources to be provisioned from
each environment. It is possible and a very common use case to list multiple resources,
even multiple types of resources, in a single topology file. A less common use case, but
still supported, is to provision multiple resources across multiple environments.

The topology file does not designate the format of the output, nor map the particular
resources that get provisioned into output inventory groups. That is the work of the
layouts file.

Structure

A topology is a YAML file or a JSON file formatted with a single top-level object.

There are two top level keys in a topology.

The first key is named topology_name and is a relatively free-form string that identifies
the user-friendly name for this particular topology. For best practices, this should
resemble the file name and possibly the name of the key from the PinFile.

The second key is the resource_groups key. This key is an array of objects.

Resource Group

Each entry in the resource_group key array is itself an object hash with three
object keys.

The first key is resource_group_name, and is a user-friendly name for the
resources that will be provisioned from this group definition.

The second key is res_group_type and must be a string of a limited set. This set
must match to the particular environment. Some environments can define different types
of valid values. As an example, the value duffy will define a resource type to
be provisioned in a Duffy architecture, whereas the value beaker will contain definitions
of a set of servers to be provisioned in a Beaker environment.

The third key is res_defs. This key defines an array of objects. Each of these objects’
exact form will be dictated by the value of res_group_type. To see more information on
the structure of these values, check the example topologies section of this documentation.

Layouts

A layout file is the current mechanism to define mappings between the resources provisioned
out of the topology and the Ansible inventory groups that are output.

Topics

	Layouts
	Structure
	Hosts

Structure

As with a topology file, a layout file is a YAML file or a JSON file with a single
root object hash. There is one top-level entry in the hash, named inventory_layout.
The inventory_layout value is itself an object that has a few fields inside of it.

Hosts

The first hash value is hosts, which contains an object hash as a value. The keys of
that hash are the names of hosts that have been provisioned out of the topology. Each
host has two properties, count and host_groups.

The count property says how many of the topology hosts are to share this inventory
hostname. For instance, if the host is “webserver” and count is 2, then this will
generate hosts in the output inventory named “webserver-1” and “webserver-2”. This
value is optional and defaults to 1 when it’s not present.

The host_groups field contains an array of Ansible inventory groups into which all
the hosts under this hash will get placed. This value is optional and will default to
an empty list when not filled. In that case, the host will be named into the inventory
with its host vars, and added to default ‘all’ group.

As an example, assume you provisioned three hosts and you wanted one database and
two applicaiton hosts. Your goal is to get to an Ansible inventory that looks like this:

[backend]
database

[frontend]
webhost-1
webhost-2

[ldap]
database
webhost-1
webhost-2

[security_updates]
database

Then your hosts object would look like this:

hosts:
 database:
 count: 1
 host_groups:
 - backend
 - ldap
 - security_updates
 webhost:
 count: 2
 host_groups:
 - ldap
 - frontend

Ansible Variables

Topics

	Ansible Variables
	Inputs

	Built-ins

	Defaults

Inputs

The following variables can be set using ansible extra_vars, including in the [evars] section
of linchpin.conf, to alter linchpin’s default behavior.

	topology	topology_file

	A set of rules, written in YAML, that define the way the provisioned
systems should look after executing linchpin.

Generally, the topology and topology_file values are
interchangeable, except after the file has been processed.

	schema	schema_file

	JSON description of the format for the topology.
(schema_v3, schema_v4 are still available)

	layout	layout_file

	YAML definition for providing an ansible (currently) static inventory file, based upon the provided
topology.

	inventory	inventory_file

	If layout / layout_file is provided, this will be the location of the resulting ansible inventory.

	linchpin_config

	if passed on the command line with -c/--config, should be
an ini-style config file with linchpin default configurations (see
BUILT-INS below for more information)

	resources	resources_file

	File with the resource outputs in a JSON formatted file. Useful for teardown (destroy,down) actions
depending on the provider.

	workspace

	If provided, the above variables will be adjusted
and mapped according to this value. Each path will use the following
variables:

topology / topology_file = /<topologies_folder>
layout / layout_file = /<layouts_folder>
resources / resources_file = /resources_folder>
inventory / inventory_file = /<inventories_folder>

.. note:: schema is not affected by this pathing

If the WORKSPACE environment variable is set, it will be used here. If it
is not, this variable can be set on the command line with -w/--workspace, and defaults
to the location of the PinFile bring provisioned.

 Example Topologies

Example Topologies

Before using Linchpin, here are few Linchpin topology examples.

	AWS Topologies
	AWS EC2 Multiple Accounts

	AWS EC2 Keypair

	AWS CFN EXAMPLE1

	AWS CFN EXAMPLE2

	AWS FULLSTACK EXAMPLE

	AWS EC2 Security Groups EXAMPLE

	Openstack Topologies
	Openstack Server

	Openstack Keypair

	Openstack Cinder Volume

	Openstack Swift Container

	Openstack Container & Volume

	Openstack Full Stack

	Steps to provision Single Host
	Credentials

	Topology

	Provision

	OpenShift Topologies
	Inventory Generation

	Accessing OpenShift Resources

	Note About Teardown

	Example Topologies

	Gcloud Topologies
	Google Cloud Topologies

	Duffy Topologies
	Simple Duffy Cluster

	Beaker Topologies
	Beaker Server

	Requiring Specific Hosts

	Libvirt Topologies
	Simple Libvirt Topology

	Complete Libvirt Topology

	Hybrid Topologies
	Hybrid Topology1 (os_heat_aws_s3_gce)

	Beaker Topologies
	Beaker Server

	Requiring Specific Hosts

	oVirt Topologies
	oVirt Virtual Machines

 AWS Topologies

AWS Topologies

Topics

	AWS Topologies
	AWS EC2 Multiple Accounts

	AWS EC2 Keypair

	AWS CFN EXAMPLE1

	AWS CFN EXAMPLE2

	AWS FULLSTACK EXAMPLE

	AWS EC2 Security Groups EXAMPLE

AWS EC2 Multiple Accounts

topology_name: "ex_aws_topo"
site: "qeos"
resource_groups:
 -
 resource_group_name: "testgroup1"
 res_group_type: "aws"
 res_defs:
 -
 res_name: "ha_inst"
 flavor: "t1.micro"
 res_type: "aws_ec2"
 region: "us-west-2"
 image: "ami-014cb561"
 count: 1
 keypair: "libra"
 assoc_creds: "master_aws_creds"
 -
 resource_group_name: "testgroup2"
 res_group_type: "aws"
 res_defs:
 -
 res_name: "ha_inst2"
 flavor: "t1.micro"
 res_type: "aws_ec2"
 region: "us-east-1"
 image: "ami-00a7636d"
 count: 2
 keypair: "libra"
 assoc_creds: "master_aws_creds"
 -
 resource_group_name: "testgroup3"
 res_group_type: "aws"
 res_defs:
 -
 res_name: "ha_inst2"
 flavor: "t1.micro"
 res_type: "aws_ec2"
 region: "us-east-1"
 image: "ami-00a7636d"
 count: 1
 keypair: "libra"
 assoc_creds: "sk_aws_creds"
resource_group_vars:
 -
 resource_group_name : "testgroup1"
 Name: "TestInstanceGroup1"
 test_var1: "test_var1 msg is grp1 hello"
 test_var2: "test_var2 msg is grp1 hello"
 test_var3: "test_var3 msg is grp1 hello"
 -
 resource_group_name : "testgroup2"
 Name: "TestInstanceGroup2"
 test_var1: "test_var1 msg is grp2 hello"
 test_var2: "test_var2 msg is grp2 hello"
 test_var3: "test_var3 msg is grp2 hello"
 -
 resource_group_name : "testgroup3"
 Name: "TestInstanceGroup3"
 test_var1: "test_var1 msg is grp3 hello"
 test_var2: "test_var2 msg is grp3 hello"
 test_var3: "test_var3 msg is grp3 hello"
 -
 resource_group_name : "testgroup4"
 Name: "TestInstanceGroup4"
 test_var1: "test_var1 msg is grp4 hello"
 test_var2: "test_var2 msg is grp4 hello"
 test_var3: "test_var3 msg is grp4 hello"

AWS EC2 Keypair

topology_name: "ex_aws_keypair_topo"
site: "qeos"
resource_groups:
 -
 resource_group_name: "testgroup1"
 res_group_type: "aws"
 res_defs:
 - res_name: "ex_keypair_sk"
 res_type: "aws_ec2_key"
 region: "us-west-2"
 assoc_creds: "sk_aws_personal"
resource_group_vars:
 -
 resource_group_name : "testgroup1"
 Name: "TestInstanceGroup1"
 test_var1: "test_var1 msg is grp1 hello"
 test_var2: "test_var2 msg is grp1 hello"
 test_var3: "test_var3 msg is grp1 hello"

AWS CFN EXAMPLE1

topology_name: "ex_cfn_topo"
site: "qeos"
resource_groups:
 -
 resource_group_name: "testgroup1"
 res_group_type: "aws"
 res_defs:
 -
 res_name: "cfnsimplestackaws"
 res_type: "aws_cfn"
 region: "us-east-1"
 template_path: "/path/to/cfn_template"
 assoc_creds: "sk_aws_personal"
resource_group_vars:
 -
 resource_group_name : "testgroup1"
 Name: "TestInstanceGroup1"
 cfn_params:
 KeyName: "sk_key"
 InstanceType: "t2.micro"

AWS CFN EXAMPLE2

topology_name: "ex_cfn_topo2"
site: "qeos"
resource_groups:
 -
 resource_group_name: "testgroup1"
 res_group_type: "aws"
 res_defs:
 -
 res_name: "cfnsimplestackaws"
 res_type: "aws_cfn"
 region: "us-east-1"
 template_path: "/path/to/ec2_sample_cfn.template"
 assoc_creds: "sk_aws_personal"
 -
 resource_group_name: "testgroup2"
 res_group_type: "aws"
 res_defs:
 -
 res_name: "ha_inst2"
 flavor: "t2.micro"
 res_type: "aws_ec2"
 region: "us-east-1"
 image: "ami-fce3c696"
 count: 2
 keypair: "sk_key"
 assoc_creds: "sk_aws_personal"
resource_group_vars:
 -
 resource_group_name : "testgroup1"
 Name: "TestInstanceGroup1"
 cfn_params:
 KeyName: "sk_key"
 InstanceType: "t2.micro"
 -
 resource_group_name : "testgroup2"
 Name: "TestInstanceGroup2"
 test_var1: "test_var1 msg is grp2 hello"
 test_var2: "test_var2 msg is grp2 hello"
 test_var3: "test_var3 msg is grp2 hello"

AWS FULLSTACK EXAMPLE

topology_name: "ex_aws_full_stack"
site: "testsite"
resource_groups:
 -
 resource_group_name: "testgroup1"
 res_group_type: "aws"
 res_defs:
 -
 res_name: "ha_inst2"
 flavor: "t2.micro"
 res_type: "aws_ec2"
 region: "us-east-1"
 image: "ami-fce3c696"
 count: 1
 keypair: "sk_key"
 -
 res_name: "samvaranbucktest"
 res_type: "aws_s3"
 region: "us-west-2"
 -
 res_name: "ex_keypair_sk"
 res_type: "aws_ec2_key"
 region: "us-west-2"
 assoc_creds: "sk_aws_personal"
 -
 resource_group_name: "testgroup2"
 res_group_type: "aws"
 res_defs:
 -
 res_name: "cfnsimplestackaws"
 res_type: "aws_cfn"
 region: "us-east-1"
 template_path: "/path/to/ec2_sample_cfn.template"
 assoc_creds: "sk_aws_personal"
resource_group_vars:
 -
 resource_group_name : "testgroup1"
 Name: "TestInstanceGroup1"
 test_var1: "test_var1 msg is grp1 hello"
 test_var2: "test_var2 msg is grp1 hello"
 test_var3: "test_var3 msg is grp1 hello"
 -
 resource_group_name : "testgroup2"
 Name: "TestInstanceGroup1"
 cfn_params:
 KeyName: "sk_key"
 InstanceType: "t2.micro"

Note

Source of the above mentioned examples is available here [https://github.com/CentOS-PaaS-SIG/linch-pin/tree/develop/linchpin/examples/topologies]

AWS EC2 Security Groups EXAMPLE

topology_name: "aws_sg_topology"
resource_groups:
 -
 resource_group_name: "awssgtest"
 res_group_type: "aws"
 res_defs:
 -
 res_name: "aws_test_sg"
 res_type: "aws_sg"
 description: "AWS Security Group with ssh access"
 region: "us-east-1"
 rules:
 -
 rule_type: "inbound"
 from_port: 8 # type 8 is ICMP echo request
 to_port: -1
 proto: "icmp"
 cidr_ip: "0.0.0.0/0"
 -
 rule_type: "inbound"
 from_port: 22
 to_port: 22
 proto: "tcp"
 cidr_ip: "0.0.0.0/0"
 -
 rule_type: "outbound"
 from_port: "all"
 to_port: "all"
 proto: "all"
 cidr_ip: "0.0.0.0/0"
 assoc_creds: "aws_creds"
resource_group_vars:
 -
 resource_group_name : "awssgtest"
 test_var1: "test_var1 msg is grp1 hello"

Note

Source of the above AWS EC2 Security Groups example can be found at Example Topologies [https://github.com/CentOS-PaaS-SIG/linch-pin/tree/master/ex_topo]

 Openstack Topologies

Openstack Topologies

Topics

	Openstack Topologies
	Openstack Server

	Openstack Keypair

	Openstack Cinder Volume

	Openstack Swift Container

	Openstack Container & Volume

	Openstack Full Stack

	Steps to provision Single Host
	Credentials

	Topology

	Provision

Openstack Server

 topology_name: "example_topo"
 site: "qeos"
 resource_groups:
 -
 resource_group_name: "testgroup1"
 res_group_type: "openstack"
 res_defs:
 -
 res_name: "ha_inst"
 flavor: "m1.small"
 res_type: "os_server"
 image: "rhel-6.5_jeos"
 count: 1
 keypair: "ci-factory"
 networks:
 - "e2e-openstack"
 -
 res_name: "web_inst"
 flavor: "m1.small"
 res_type: "os_server"
 image: "rhel-6.5_jeos"
 count: 1
 keypair: "ci-factory"
 networks:
 - "e2e-openstack"
 assoc_creds: "cios_e2e-openstack"
 -
 resource_group_name: "testgroup2"
 res_group_type: "openstack"
 res_defs:
 - res_name: "ano_inst"
 flavor: "m1.small"
 res_type: "os_server"
 image: "rhel-6.5_jeos"
 count: 1
 keypair: "ci-factory"
 networks:
 - "e2e-openstack"
 assoc_creds: "cios_e2e-openstack"
 resource_group_vars:
 -
 resource_group_name : "testgroup1"
 test_var1: "test_var1 msg is grp1 hello "
 test_var2: "test_var2 msg is grp1 hello "
 test_var3: "test_var3 msg is grp1 hello "
 -
 resource_group_name : "testgroup2"
 test_var1: "test_var1 msg is grp2 hello"
 test_var2: "test_var2 msg is grp2 hello"
 test_var3: "test_var3 msg is grp2 hello"
 -
 resource_group_name : "testgroup3"
 test_var1: "test_var1 msg is grp3 hello"
 test_var2: "test_var2 msg is grp3 hello"
 test_var3: "test_var3 msg is grp3 hello"

Openstack Keypair

 topology_name: "ex_os_keypair"
 site: "qeos"
 resource_groups:
 -
 resource_group_name: "testgroup1"
 res_group_type: "openstack"
 res_defs:
 - res_name: "ex_keypair_sk"
 res_type: "os_keypair"
 assoc_creds: "cios_e2e-openstack"
 resource_group_vars:
 -
 resource_group_name : "testgroup1"
 Name: "TestInstanceGroup1"
 test_var1: "test_var1 msg is grp1 hello"
 test_var2: "test_var2 msg is grp1 hello"
 test_var3: "test_var3 msg is grp1 hello"

Openstack Cinder Volume

 topology_name: "ex_os_vol"
 site: "qeos"
 resource_groups:
 -
 resource_group_name: "testgroup1"
 res_group_type: "openstack"
 res_defs:
 - res_name: "test_volume_sk"
 res_type: "os_volume"
 size: 1
 count: 3
 assoc_creds: "cios_e2e-openstack"
 resource_group_vars:
 -
 resource_group_name : "testgroup1"
 Name: "TestInstanceGroup1"
 test_var1: "test_var1 msg is grp1 hello"
 test_var2: "test_var2 msg is grp1 hello"
 test_var3: "test_var3 msg is grp1 hello"

Openstack Swift Container

 topology_name: "ex_os_obj"
 site: "qeos"
 resource_groups:
 -
 resource_group_name: "testgroup1"
 res_group_type: "openstack"
 res_defs:
 - res_name: "testcontainer_sk"
 res_type: "os_object"
 access: "public"
 count: 2
 assoc_creds: "cios_e2e-openstack"
 -
 resource_group_name: "testgroup2"
 res_group_type: "openstack"
 res_defs:
 - res_name: "testit_sk"
 res_type: "os_object"
 access: "private"
 count: 2
 assoc_creds: "cios_e2e-openstack"
 resource_group_vars:
 -
 resource_group_name : "testgroup1"
 Name: "TestInstanceGroup1"
 test_var1: "test_var1 msg is grp1 hello"
 test_var2: "test_var2 msg is grp1 hello"
 test_var3: "test_var3 msg is grp1 hello"
 -
 resource_group_name : "testgroup2"
 Name: "TestInstanceGroup2"
 test_var1: "test_var1 msg is grp2 hello"
 test_var2: "test_var2 msg is grp2 hello"
 test_var3: "test_var3 msg is grp2 hello"

Openstack Container & Volume

 topology_name: "ex_os_obj_vol"
 site: "qeos"
 resource_groups:
 -
 resource_group_name: "testgroup1"
 res_group_type: "openstack"
 res_defs:
 - res_name: "test_volume_sk"
 res_type: "os_volume"
 size: 2
 count: 3
 - res_name: "testcontainer_sk"
 res_type: "os_object"
 access: "public"
 count: 3
 assoc_creds: "cios_e2e-openstack"
 resource_group_vars:
 -
 resource_group_name : "testgroup1"
 Name: "TestInstanceGroup1"
 test_var1: "test_var1 msg is grp1 hello"
 test_var2: "test_var2 msg is grp1 hello"
 test_var3: "test_var3 msg is grp1 hello"

Openstack Full Stack

 topology_name: "ex_os_heat_topo"
 site: "qeos"
 resource_groups:
 -
 resource_group_name: "testgroup1"
 res_group_type: "openstack"
 res_defs:
 -
 res_name: "ex_keypair_sk"
 res_type: "os_keypair"
 -
 res_name: "os_heat_template_sample"
 res_type: "os_heat"
 template_path: "/path/to/hot_template_sample2.yaml"
 - res_name: "ano_inst"
 flavor: "m1.small"
 res_type: "os_server"
 image: "rhel-6.5_jeos"
 count: 2
 keypair: "ci-factory"
 networks:
 - "e2e-openstack"
 assoc_creds: "cios_e2e-openstack"
 -
 resource_group_name: "testgroup2"
 res_group_type: "openstack"
 res_defs:
 - res_name: "test_volume_sk"
 res_type: "os_volume"
 size: 2
 count: 3
 - res_name: "testcontainer_sk"
 res_type: "os_object"
 access: "public"
 count: 3
 assoc_creds: "cios_e2e-openstack"
 resource_group_vars:
 -
 resource_group_name : "testgroup1"
 Name: "TestInstanceGroup1"
 heat_params:
 key_name: "ci-factory"
 image_id: "rhel-6.5_jeos"
 instance_type: "m1.small"
 network_name: "e2e-openstack"
 -
 resource_group_name : "testgroup2"
 Name: "TestInstanceGroup2"
 test_var1: "test_var1 msg is grp2 hello"
 test_var2: "test_var2 msg is grp2 hello"
 test_var3: "test_var3 msg is grp2 hello"

Steps to provision Single Host

Topics

	Openstack Topologies
	Openstack Server

	Openstack Keypair

	Openstack Cinder Volume

	Openstack Swift Container

	Openstack Container & Volume

	Openstack Full Stack

	Steps to provision Single Host
	Credentials

	Topology

	Provision

Credentials

	save openstack credentials in standard clouds.yml file using below
format and save the directory path containing clouds.yml in environment variable CREDS_PATH.

 clouds:
 devstack:
 auth:
 username: "admin"
 password: "Secret123"
 project_name: "my-tenant"
 auth_url: "http://192.168.122.33:5000/v2.0"

Topology

	create topology file under $WORKSPACE/topologies/openstack_topology.yml
as show below:

 topology_name: "osp-test"
 resource_groups:
 -
 resource_group_name: "lp-test"
 resource_group_type: "openstack"
 resource_definitions:
 - name: "test1"
 type: "os_server"
 flavor: "m1.small"
 image: "rhel-6.5_jeos"
 count: 1
 keypair: "ci-factory"
 networks:
 - "e2e-openstack"
 fip_pool: "192.168.122.1/24"
 credentials:
 filename: "clouds.yml"
 profile: "devstack"

Provision

	provision the above topology

$ cd $WORKSPACE
$ export CREDS_PATH="/path/to/credential_dir/"
$ linchpin -v up

	Alternatively one could pass credentials path as an argument to linchpin

$ cd $WORKSPACE
$ linchpin -v --creds-path /path/to/dir_containing_clouds.yml/ up

 OpenShift Topologies

OpenShift Topologies

Topics

	OpenShift Topologies
	Inventory Generation

	Accessing OpenShift Resources

	Note About Teardown

	Example Topologies
	OpenShift Instance (Inline)

	OpenShift Instance (external)

Inventory Generation

It is important to note that OpenShift resources do not follow the normal rules
of most other providers. When you provision a resource in OpenShift, there is
no easy way for Linchpin to introspect any information about the resources you
have spun up. Accessing individual containers and pods directly is a violation
of how most people expect OpenShift and container technologies in general to
operate. Therefore, no output will be given into the generated Ansible
inventory file for an OpenShift provisioning. OpenShift does not even expose a
method to address an individual container and create or destroy one. It only
exposes the pod level and above for creation, making entering into a particular
container impossible.

Additionally, it is possible to use Linchpin to spin up resources in OpenShift
that are not even containers, as any item other than an Event which may be
created through the API can be created through the OpenShift provider layer
in Linchpin. Thus, even if proper destination IP addresses could be
introspected from the results, there is no guarantee that what is being created
even has such a destination.

Accessing OpenShift Resources

Furthermore, individual containers will typically not expose SSH access to the
process space. Such introspection of the containers needs to be done through
native OpenShift methods such as the command line client “oc” and its sub
commands like “exec” and “rsh”. Information on how to access running pods and
containers can be found in the external documentation for OpenShift, along with
specific information from your cluster’s administrator.

Note About Teardown

Again, OpenShift shows its special nature in the teardown step of
infrastructure management. Most use cases, as is the case with the example
below, will create what is known as a “replication controller”. This is an
object with the job of monitoring and maintaining multiple copies of a pod
running across the cluster. The replication controller provides a very simple
way to increase or decrease the quantity of running pods. If it detects that
ond of its pods has stopped for any reason, it will attempt to recreate the
pod again. This is good, as it gives a layer of automated infrastructure
monitoring to ensure the required number of copies are running across the
cluster.

However, this configuration creates a difficulty with teardown. If a topology
file creates a replication controller with more than 0 pods (the example below
creates a ReplicationController with 7 copies of the Jenkins slave pod running)
that RC will work to keep the pods up, but it will not teardown those pods when
the RC is deleted. Those pods will remain running until they are either killed
manually or until their base process crashes. Thus, running “linchpin rise”
followed by “linchpin drop” on this ReplicationController will leave seven
orphaned pods running in the cluster unless they are cleaned up manually.

One way to avoid this is to “scale down” the RC by setting its number of
active pods to 0 before deleting it. This will leave no orphaned pods behind.
Alternatively, the pods could be deleted manually after deletion of the RC.
Linchpin does not attempt to do the scaling automatically, as there are a vast
number of possible scenarios for leaving orphaned items behind in a cluster.
Pods are only referenced here as the most likely possibility, and are a clear
example of something that could be orphaned on a cluster.

Example Topologies

Each of these topologies has two places where authentication data will need to
be inserted. The first is the field named “api_endpoint”. This needs to be,
minimally, the hostname and port serving the OpenShift cluster API. If the
API is behind an additional path element instead of living at the root of the
host, this portion can be continued on just as if this is part of a URL
fragment.

Secondly, the “api_token” field needs to filled in. This field is time
dependent for most users, so it might need to be regenerated on a regular
basis. This can be done by executing “oc whoami –token” after an “oc login”
command.

OpenShift Instance (Inline)

In this example, the data for a ReplicationController is inserted directly
into the topology file. The value under “inline_data” is exactly the same
as the data that would be passed into the “oc” command through a file.

 topology_name: openshift
 resource_groups:
 - resource_group_name: test1
 res_group_type: openshift
 api_endpoint: example.com:8443
 api_token: someapitoken
 resources:
 - inline_data:
 apiVersion: v1
 kind: ReplicationController
 metadata:
 name: jenkins-slave
 namespace: central-ci-test-ghelling
 spec:
 replicas: 7
 selector:
 name: jenkins-slave
 template:
 metadata:
 labels:
 name: jenkins-slave
 spec:
 containers:
 - image: redhatqecinch/jenkins_slave:latest
 name: jenkins-slave
 env:
 - name: JENKINS_MASTER_URL
 value: http://10.8.172.6/
 - name: JSLAVE_NAME
 value: mynode
 restartPolicy: Always
 securityPolicy:
 runAsUser: 1000090000

OpenShift Instance (external)

In this example, the data is not placed into the topology file but a reference
to an external yaml file is provided. That file will be read in by Linchpin
and uploaded to the OpenShift cluster just as if it had been passed into the
“oc” client.

 topology_name: openshift_external
 resource_groups:
 - resource_group_name: test-external
 res_group_type: openshift
 api_endpoint: example.com:8443
 api_token: someapitoken
 resources:
 - file_reference: /home/user/openshift/external/resource/file.yaml
 - file_reference: /home/user/openshift/external/resource/cluster.yaml

 Gcloud Topologies

Gcloud Topologies

Topics

	Gcloud Topologies
	Google Cloud Topologies

Google Cloud Topologies

 topology_name: "ex_gcloud_topo1"
 resource_groups:
 -
 resource_group_name: "testgroup1"
 res_group_type: "gcloud"
 res_defs:
 -
 res_name: "testresource"
 flavor: "n1-standard-1"
 res_type: "gcloud_gce"
 region: "us-central1-a"
 image: "centos-7"
 count: 1
 assoc_creds: "gcloudsk"
 -
 resource_group_name: "testgroup2"
 res_group_type: "gcloud"
 res_defs:
 -
 res_name: "testresource2"
 flavor: "n1-standard-1"
 res_type: "gcloud_gce"
 region: "us-central1-a"
 image: "centos-7"
 count: 2
 assoc_creds: "gcloudsk"
 resource_group_vars:
 -
 resource_group_name : "testgroup1"
 Name: "TestInstanceGroup1"
 test_var1: "test_var1 msg is grp1 hello"
 test_var2: "test_var2 msg is grp1 hello"
 test_var3: "test_var3 msg is grp1 hello"
 -
 resource_group_name : "testgroup2"
 Name: "TestInstanceGroup2"
 test_var1: "test_var1 msg is grp2 hello"
 test_var2: "test_var2 msg is grp2 hello"
 test_var3: "test_var3 msg is grp3 hello"

Note

Source of the above mentioned examples can be found at Example Topologies [https://github.com/CentOS-PaaS-SIG/linch-pin/tree/master/ex_topo]

 Duffy Topologies

Duffy Topologies

Topics

	Duffy Topologies
	Simple Duffy Cluster

Simple Duffy Cluster

topology_name: "duffy_3node_cluster"
resource_groups:
 -
 resource_group_name: "3node"
 res_group_type: "duffy"
 res_defs:
 -
 res_name: "duffy_nodes"
 res_type: "duffy"
 version: 7
 arch: "x86_64"
 count: 3
 assoc_creds: "duffy_creds"

Note

the reference to duffy_creds defaults to using an assumed file
in the user’s home directory called duffy.key, and points to an
internal service at http://admin.ci.centos.org:8080. The credentials
themselves are held in the duffy.key file.

 Beaker Topologies

Beaker Topologies

Topics

	Beaker Topologies
	Beaker Server

	Requiring Specific Hosts
	Force a Specific Host

	Select from a named System Pool

Beaker Server

topology_name: beaker
resource_groups:
 - resource_group_name: test1
 res_group_type: beaker
 job_group: your-beaker-group
 whiteboard: Arbitrary Job whiteboard string
 recipesets:
 - distro: RHEL-6.5
 arch: x86_64
 keyvalue:
 - MEMORY>1000
 - DISKSPACE>20000
 hostrequires:
 - tag: processors
 op: ">="
 value: 4
 - tag: device
 op: "="
 type: "network"
 count: 1

Note

Source of the above Beaker example can be found at Example Topologies [https://github.com/CentOS-PaaS-SIG/linch-pin/tree/master/examples/topology]

Requiring Specific Hosts

By default, any host available to your beaker user can be selected for use in a given job.
If a specific host, or hosts, is desired, hostrequires filters can be used to refine the hosts
selected for use in a given job.

Force a Specific Host

The reservation of a specific hostname can be done with the force keyword nested within a
recipeset’s hostrequires mapping. Additional filtering,
such as a keyvalue or hostrequires filter, is silently ignored by beaker when the hostname
to reserve is forced. Because of this, using the force argument is mutually exclusive to using
any other filters.

For example:

hostrequires:
 force: beaker.machine.hostname

Select from a named System Pool

Beaker also supports provisioning from a named system pool:

hostrequires:
 - tag: pool
 op: "="
 value: system-pool-name

This filter will automatically select a system from the named system pool, but unlike the force
keyword additional filters will also be applied.

Note

The “op” keyword of a hostrequires filter should be quoted when the operator contains symbols,
such as “==”, ”!=”, or “>=”.

 Libvirt Topologies

Libvirt Topologies

Topics

	Libvirt Topologies
	Simple Libvirt Topology

	Complete Libvirt Topology

Simple Libvirt Topology

 topology_name: "libvirt_simple"
 resource_groups:
 -
 resource_group_name: "simple"
 res_group_type: "libvirt"
 res_defs:

 - res_name: "centos72"
 res_type: "libvirt_node"
 driver: 'qemu'
 uri: 'qemu:///system'
 image_src: 'file:///tmp/linchpin_centos71.img'
 count: 2
 memory: 2048
 vcpus: 2
 networks:
 - name: linchpin-centos72

 - res_name: "centos71"
 res_type: "libvirt_node"
 uri: 'qemu:///system'
 count: 1
 image_src: 'http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz'
 memory: 2048
 vcpus: 2
 arch: x86_64
 networks:
 - name: linchpin-centos71

Note

Each set of nodes can only be assigned one network at this time.

Note

The above topology assumes both networks exist and are running at
provision time. If they are not, or do not exist, they will not be created
and will fail.

Complete Libvirt Topology

topology_name: "libvirt_test"
resource_groups:
 -
 resource_group_name: "libvirt1"
 res_group_type: "libvirt"
 res_defs:

 - res_name: "linchpin-centos72"
 res_type: "libvirt_network"
 ip: 192.168.77.100
 dhcp_start: 192.168.77.101
 dhcp_end: 192.168.77.112

 - res_name: "linchpin-centos74"
 res_type: "libvirt_network"

 - res_name: "centos72"
 res_type: "libvirt_node"
 uri: 'qemu:///system'
 count: 2
 memory: 2048
 vcpus: 2
 networks:
 - name: linchpin-centos72

 - res_name: "centos74"
 res_type: "libvirt_node"
 uri: 'qemu://libvirt.example.com/system'
 memory: 1024
 vcpus: 1
 networks:
 - name: linchpin-centos74

Note

as compared with the simple topology above, this topology
defines and enables the network(s) with the res_type of libvirt_network.

Note

The linchpin-centos72 network will support dhcp, with a defined pool.

Note

The linchpin-centos74 is providing only the network definition.
Each defined node would need to manually configure its own ip address.

Note

Libvirt provisioning does not yet support assoc_creds as simple
adjustments can be made to a hypervisor to accommodate authentication.

 Hybrid Topologies

Hybrid Topologies

Topics

	Hybrid Topologies
	Hybrid Topology1 (os_heat_aws_s3_gce)

Hybrid Topology1 (os_heat_aws_s3_gce)

 topology_name: "ex_os_heat_aws_s3_gce_topo"
 site: "testsite"
 resource_groups:
 -
 resource_group_name: "testgroup1"
 res_group_type: "aws"
 res_defs:
 -
 res_name: "ha_inst2"
 flavor: "t2.micro"
 res_type: "aws_ec2"
 region: "us-east-1"
 image: "ami-fce3c696"
 count: 1
 keypair: "sk_key"
 -
 res_name: "samvaranbucktest"
 res_type: "aws_s3"
 region: "us-west-2"
 assoc_creds: "sk_aws_personal"
 -
 resource_group_name: "testgroup2"
 res_group_type: "openstack"
 res_defs:
 - res_name: "ano_inst"
 flavor: "m1.small"
 res_type: "os_server"
 image: "rhel-6.5_jeos"
 count: 1
 keypair: "ci-factory"
 networks:
 - "e2e-openstack"
 assoc_creds: "cios_e2e-openstack"
 -
 resource_group_name: "testgroup3"
 res_group_type: "gcloud"
 res_defs:
 -
 res_name: "testresourcesme"
 flavor: "n1-standard-1"
 res_type: "gcloud_gce"
 region: "us-central1-a"
 image: "debian-8"
 count: 1
 assoc_creds: "gcloudsk"
 -
 resource_group_name: "testgroup4"
 res_group_type: "openstack"
 res_defs:
 -
 res_name: "os_heat_template_sample"
 res_type: "os_heat"
 template_path: "/root/clients/heat_clients/hot_template_sample2.yaml"
 assoc_creds: "cios_e2e-openstack"
 resource_group_vars:
 -
 resource_group_name: "testgroup1"
 Name: "TestInstanceGroup1"
 test_var1: "test_var1 msg is grp1 hello"
 test_var2: "test_var2 msg is grp1 hello"
 test_var3: "test_var3 msg is grp1 hello"
 -
 resource_group_name: "testgroup2"
 Name: "TestInstanceGroup2"
 test_var1: "test_var1 msg is grp2 hello"
 test_var2: "test_var2 msg is grp2 hello"
 test_var3: "test_var3 msg is grp2 hello"
 -
 resource_group_name: "testgroup3"
 Name: "TestInstanceGroup3"
 test_var1: "test_var1 msg is grp3 hello"
 test_var2: "test_var2 msg is grp3 hello"
 test_var3: "test_var3 msg is grp3 hello"
 -
 resource_group_name: "testgroup4"
 Name: "TestInstanceGroup4"
 heat_params:
 key_name: "ci-factory"
 image_id: "rhel-6.5_jeos"
 instance_type: "m1.small"
 network_name: "e2e-openstack"

Note

Source of the above mentioned examples can be found at Example Topologies [https://github.com/CentOS-PaaS-SIG/linch-pin/tree/master/ex_topo]

 Beaker Topologies

Beaker Topologies

Topics

	Beaker Topologies
	Beaker Server

	Requiring Specific Hosts
	Force a Specific Host

	Select from a named System Pool

Beaker Server

topology_name: beaker
resource_groups:
 - resource_group_name: test1
 res_group_type: beaker
 job_group: your-beaker-group
 whiteboard: Arbitrary Job whiteboard string
 recipesets:
 - distro: RHEL-6.5
 arch: x86_64
 keyvalue:
 - MEMORY>1000
 - DISKSPACE>20000
 hostrequires:
 - tag: processors
 op: ">="
 value: 4
 - tag: device
 op: "="
 type: "network"
 count: 1

Note

Source of the above Beaker example can be found at Example Topologies [https://github.com/CentOS-PaaS-SIG/linch-pin/tree/master/examples/topology]

Requiring Specific Hosts

By default, any host available to your beaker user can be selected for use in a given job.
If a specific host, or hosts, is desired, hostrequires filters can be used to refine the hosts
selected for use in a given job.

Force a Specific Host

The reservation of a specific hostname can be done with the force keyword nested within a
recipeset’s hostrequires mapping. Additional filtering,
such as a keyvalue or hostrequires filter, is silently ignored by beaker when the hostname
to reserve is forced. Because of this, using the force argument is mutually exclusive to using
any other filters.

For example:

hostrequires:
 force: beaker.machine.hostname

Select from a named System Pool

Beaker also supports provisioning from a named system pool:

hostrequires:
 - tag: pool
 op: "="
 value: system-pool-name

This filter will automatically select a system from the named system pool, but unlike the force
keyword additional filters will also be applied.

Note

The “op” keyword of a hostrequires filter should be quoted when the operator contains symbols,
such as “==”, ”!=”, or “>=”.

 oVirt Topologies

oVirt Topologies

Topics

	oVirt Topologies
	oVirt Virtual Machines

oVirt Virtual Machines

topology_name: "oVirt_vms_example_topology"
resource_groups:
 -
 resource_group_name: "golden_env_mixed"
 resource_group_type: "ovirt"
 resource_definitions:
 -
 res_name: "virtio_1_0"
 res_type: "ovirt_vms"
 template: "golden_mixed_virtio_template"
 cluster: "golden_env_mixed_1"
 -
 res_name: "virtio_1_1"
 res_type: "ovirt_vms"
 template: "golden_mixed_virtio_template"
 cluster: "golden_env_mixed_1"

 credentials:
 filename: "ex_ovirt_creds.yml"
 profile: "ge2"

Note

Source of the above mentioned examples can be found at Example Topologies [https://github.com/CentOS-PaaS-SIG/linch-pin/tree/master/ex_topo]

 Python API Reference

Python API Reference

This page contains the list of project’s modules

	linchpin module

	linchpin.api module

	linchpin.cli module

 linchpin module

linchpin module

The linchpin module contains calls to implement the Command Line
Interface within linchpin. It uses the Click [http://click.pocoo.org]
command line interface composer.

	
linchpin.init()

	Initializes a linchpin project, which generates an example PinFile, and
creates the necessary directory structure for topologies and layouts.

	Parameters:	ctx – Context object defined by the click.make_pass_decorator method

	
linchpin.up()

	Provisions nodes from the given target(s) in the given PinFile.

	Parameters:	
	ctx – Context object defined by the click.make_pass_decorator method

	pinfile – path to pinfile (Default: ctx.workspace)

	targets – Provision ONLY the listed target(s). If omitted, ALL targets in the
appropriate PinFile will be provisioned.

	
linchpin.rise()

	DEPRECATED. Use ‘up’

	
linchpin.destroy()

	Destroys nodes from the given target(s) in the given PinFile.

	Parameters:	
	ctx – Context object defined by the click.make_pass_decorator method

	pinfile – path to pinfile (Default: ctx.workspace)

	targets – Destroy ONLY the listed target(s). If omitted, ALL targets in the
appropriate PinFile will be destroyed.

	
linchpin.drop()

	DEPRECATED. Use ‘destroy’.

There are now two functions, destroy and down which perform node
teardown. The destroy functionality is the default, and if drop is
used, will be called.

The down functionality is currently unimplemented, but will shutdown
and preserve instances. This feature will only work on providers that
support this option.

 linchpin.api module

linchpin.api module

This page contains the list of project’s modules

	
class linchpin.api.LinchpinAPI(ctx)

	
	
__init__(ctx)

	LinchpinAPI constructor

	Parameters:	ctx – context object from api/context.py

	
lp_up(pinfile, targets='all')

	This function takes a list of targets, and provisions them according
to their topology. If an layout argument is provided, an inventory
will be generated for the provisioned nodes.

	Parameters:	
	pinfile – Provided PinFile, with available targets,

	targets – A tuple of targets to provision.

	
lp_destroy(pinfile, targets='all')

	This function takes a list of targets, and performs a destructive
teardown, including undefining nodes, according to the target.

See also

lp_down - currently unimplemented

	Parameters:	
	pinfile – Provided PinFile, with available targets,

	targets – A tuple of targets to destroy.

	
lp_down(pinfile, targets='all')

	This function takes a list of targets, and performs a shutdown on
nodes in the target’s topology. Only providers which support shutdown
from their API (Ansible) will support this option.

CURRENTLY UNIMPLEMENTED

See also

lp_destroy

	Parameters:	
	pinfile – Provided PinFile, with available targets,

	targets – A tuple of targets to provision.

	
run_playbook(pinfile, targets='all', playbook='up')

	This function takes a list of targets, and executes the given
playbook (provison, destroy, etc.) for each provided target.

	Parameters:	
	pinfile – Provided PinFile, with available targets,

	targets – A tuple of targets to run. (default: ‘all’)

	
find_topology(topology)

	Find the topology to be acted upon. This could be pulled from a
registry.

	Parameters:	topology – name of topology from PinFile to be loaded

	
get_cfg(section=None, key=None, default=None)

	Get cfgs value(s) by section and/or key, or the whole cfgs object

	Parameters:	
	section – section from ini-style config file

	key – key to get from config file, within section

	default – default value to return if nothing is found.

Does not apply if section is not provided.

	
set_cfg(section, key, value)

	Set a value in cfgs. Does not persist into a file,
only during the current execution.

	Parameters:	
	section – section within ini-style config file

	key – key to use

	value – value to set into section within config file

	
get_evar(key=None, default=None)

	Get the current evars (extra_vars)

	Parameters:	
	key – key to use

	default – default value to return if nothing is found

(default: None)

	
set_evar(key, value)

	Set a value into evars (extra_vars). Does not persist into a file,
only during the current execution.

	Parameters:	
	key – key to use

	value – value to set into evars

	
lp_rise(pinfile, targets='all')

	DEPRECATED

An alias for lp_up. Used only for backward compatibility.

	
lp_drop(pinfile, targets)

	DEPRECATED

An alias for lp_destroy. Used only for backward compatibility.

	
class linchpin.api.context.LinchpinContext

	LinchpinContext object, which will be used to manage the cli,
and load the configuration file.

	
get_cfg(section=None, key=None, default=None)

	Get cfgs value(s) by section and/or key, or the whole cfgs object

	Parameters:	
	section – section from ini-style config file

	key – key to get from config file, within section

	default – default value to return if nothing is found.

Does not apply if section is not provided.

	
get_evar(key=None, default=None)

	Get the current evars (extra_vars)

	Parameters:	
	key – key to use

	default – default value to return if nothing is found

(default: None)

	
load_config(lpconfig=None)

	Create self.cfgs from the linchpin configuration file.

Note

Overrides load_config in linchpin.api.LinchpinContext

These are the only hardcoded values, which are used to find the config
file. The search path consists of the following:

* /linchpin/library/path/linchpin.conf
* /etc/linchpin.conf
* ~/.config/linchpin/linchpin.conf
* path/to/workspace/linchpin.conf

Linchpin will continuously override and extend the configuration as
newer configurations are added and modified. Alternatively, a full path
to the linchpin configuration file can be passed.

	Parameters:	lpconfig – absolute path to a linchpin config (default: None)

	
load_global_evars()

	Instantiate the evars variable, then load the variables from the
‘evars’ section in linchpin.conf. This will then be passed to
invoke_linchpin, which passes them to the Ansible playbook as needed.

	
log(msg, **kwargs)

	Logs a message to a logfile

	Parameters:	
	msg – message to output to log

	level – keyword argument defining the log level

	
log_debug(msg)

	Logs a DEBUG message

	
log_info(msg)

	Logs an INFO message

	
log_state(msg)

	Logs nothing, just calls pass

Attention

state messages need to be implemented in a subclass

	
pinfile

	getter function for pinfile name

	
set_cfg(section, key, value)

	Set a value in cfgs. Does not persist into a file,
only during the current execution.

	Parameters:	
	section – section within ini-style config file

	key – key to use

	value – value to set into section within config file

	
set_evar(key, value)

	Set a value into evars (extra_vars). Does not persist into a file,
only during the current execution.

	Parameters:	
	key – key to use

	value – value to set into evars

	
setup_logging()

	Setup logging to the console only

Attention

Please implement this function in a subclass

	
workspace

	getter function for workspace

	
linchpin.api.utils.yaml2json(pf)

	parses yaml file into json object

 linchpin.cli module

linchpin.cli module

This page contains the list of project’s modules

	
class linchpin.cli.LinchpinCli(ctx)

	
	
__init__(ctx)

	Set some variables, pass to parent class

	
lp_up(pinfile, targets='all')

	This function takes a list of targets, and provisions them according
to their topology. If an layout argument is provided, an inventory
will be generated for the provisioned nodes.

	Parameters:	
	pinfile – Provided PinFile, with available targets,

	targets – A tuple of targets to provision.

	
lp_destroy(pinfile, targets='all')

	This function takes a list of targets, and performs a destructive
teardown, including undefining nodes, according to the target.

See also

lp_down - currently unimplemented

	Parameters:	
	pinfile – Provided PinFile, with available targets,

	targets – A tuple of targets to destroy.

	
lp_down(pinfile, targets='all')

	This function takes a list of targets, and performs a shutdown on
nodes in the target’s topology. Only providers which support shutdown
from their API (Ansible) will support this option.

CURRENTLY UNIMPLEMENTED

See also

lp_destroy

	Parameters:	
	pinfile – Provided PinFile, with available targets,

	targets – A tuple of targets to provision.

	
run_playbook(pinfile, targets='all', playbook='up')

	This function takes a list of targets, and executes the given
playbook (provison, destroy, etc.) for each provided target.

	Parameters:	
	pinfile – Provided PinFile, with available targets,

	targets – A tuple of targets to run. (default: ‘all’)

	
find_topology(topology)

	Find the topology to be acted upon. This could be pulled from a
registry.

	Parameters:	topology – name of topology from PinFile to be loaded

	
get_cfg(section=None, key=None, default=None)

	Get cfgs value(s) by section and/or key, or the whole cfgs object

	Parameters:	
	section – section from ini-style config file

	key – key to get from config file, within section

	default – default value to return if nothing is found.

Does not apply if section is not provided.

	
set_cfg(section, key, value)

	Set a value in cfgs. Does not persist into a file,
only during the current execution.

	Parameters:	
	section – section within ini-style config file

	key – key to use

	value – value to set into section within config file

	
get_evar(key=None, default=None)

	Get the current evars (extra_vars)

	Parameters:	
	key – key to use

	default – default value to return if nothing is found

(default: None)

	
set_evar(key, value)

	Set a value into evars (extra_vars). Does not persist into a file,
only during the current execution.

	Parameters:	
	key – key to use

	value – value to set into evars

	
lp_rise(pinfile, targets='all')

	DEPRECATED

An alias for lp_up. Used only for backward compatibility.

	
lp_drop(pinfile, targets)

	DEPRECATED

An alias for lp_destroy. Used only for backward compatibility.

	
class linchpin.cli.context.LinchpinCliContext

	Context object, which will be used to manage the cli,
and load the configuration file

	
get_cfg(section=None, key=None, default=None)

	Get cfgs value(s) by section and/or key, or the whole cfgs object

	Parameters:	
	section – section from ini-style config file

	key – key to get from config file, within section

	default – default value to return if nothing is found.

Does not apply if section is not provided.

	
get_evar(key=None, default=None)

	Get the current evars (extra_vars)

	Parameters:	
	key – key to use

	default – default value to return if nothing is found

(default: None)

	
load_config(lpconfig=None)

	

	
load_global_evars()

	Instantiate the evars variable, then load the variables from the
‘evars’ section in linchpin.conf. This will then be passed to
invoke_linchpin, which passes them to the Ansible playbook as needed.

	
log(msg, **kwargs)

	Logs a message to a logfile or the console

	Parameters:	
	msg – message to log

	lvl – keyword argument defining the log level

	msg_type – keyword argument giving more flexibility.

Note

Only msg_type STATE is currently implemented.

	
log_debug(msg)

	Logs a DEBUG message

	
log_info(msg)

	Logs an INFO message

	
log_state(msg)

	Logs a message to stdout

	
pinfile

	getter function for pinfile name

	
set_cfg(section, key, value)

	Set a value in cfgs. Does not persist into a file,
only during the current execution.

	Parameters:	
	section – section within ini-style config file

	key – key to use

	value – value to set into section within config file

	
set_evar(key, value)

	Set a value into evars (extra_vars). Does not persist into a file,
only during the current execution.

	Parameters:	
	key – key to use

	value – value to set into evars

	
setup_logging()

	Setup logging to a file, console, or both. Modifying the linchpin.conf
appropriately will provide functionality.

	
workspace

	getter function for workspace

 Glossary

Glossary

The following is a list of terms used throughout the LinchPin documentation.

	async

	(boolean, default: False)

Used to enable asynchronous provisioning/teardown

	async_timeout

	(int, default: 1000)

How long the resouce collection (formerly outputs_writer) process should wait

	check_mode

	(boolean, default: no)

This option does nothing at this time, though it may eventually be used for dry-run
functionality based upon the provider

	default_schemas_path

	(file_path, default: <lp_path>/defaults/<schemas_folder>)

default path to schemas, absolute path. Can be overridden by passing schema / schema_file.

	default_playbooks_path

	(file_path, default: <lp_path>/defaults/playbooks_folder>)

default path to playbooks location, only useful to the linchpin API and CLI

	default_layouts_path

	(file_path, default: <lp_path>/defaults/<layouts_folder>)

default path to inventory layout files

	default_topologies_path

	(file_path, default: <lp_path>/defaults/<topologies_folder>)

default path to topology files

	default_resources_path

	(file_path, default: <lp_path>/defaults/<resources_folder>, formerly: outputs)

default landing location for resources output data

	default_inventories_path

	(file_path, default: <lp_path>/defaults/<inventories_folder>)

default landing location for inventory outputs

	hook

	Certan scripts can be called when a particular hook has been
referenced in the PinFile. The currently available hooks are
preup, postup, predestroy, and postdestroy.

	inventory	inventory_file

	If layout / layout_file is provided, this will be the location of the resulting ansible inventory.

	linchpin_config

	if passed on the command line with -c/--config, should be
an ini-style config file with linchpin default configurations (see
BUILT-INS below for more information)

	layout	layout_file

	YAML definition for providing an ansible (currently) static inventory file, based upon the provided
topology.

	layouts_folder

	(file_path, default: layouts)

relative path to layouts

	lp_path

	base path for linchpin playbooks and python api

	lpconfig

	<lp_path>/linchpin.conf, unless overridden by linchpin_config

	output

	(boolean, default: True, previous: no_output)

Controls whether resources will be written to the resources_file

	PinFile

	A YAML file consisting of a topology and an optional
layout, among other options. This file is used by the
linchpin command-line, or Python API to determine what resources
are needed for the current action.

	playbooks_folder

	(file_path, default: provision)

relative path to playbooks, only useful to the linchpin API and CLI

	provider

	A set of platform actions grouped together, which is provided by an
external Ansible module. openstack would be a provider.

	provision

	An action taken when resources are to be made available on a
particular provider platform. Usually corresponds with the
linchpin up command.

	resources	resources_file

	File with the resource outputs in a JSON formatted file. Useful for
teardown (destroy,down) actions depending on the provider.

	schema

	JSON description of the format for the topology.

(schema_v3, schema_v4 are still available)

	schemas_folder

	(file_path, default: schemas)

relative path to schemas

	target

	Specified in the PinFile, the target references a
topology and optional layout to be acted upon from the
command-line utility, or Python API.

	teardown

	An action taken when resources are to be made unavailable on a
particular provider platform. Usually corresponds with the
linchpin destroy command.

	topologies_folder

	(file_path, default: topologies)

relative path to topologies

	topology	topology_file

	A set of rules, written in YAML, that define the way the provisioned
systems should look after executing linchpin.

Generally, the topology and topology_file values are
interchangeable, except after the file has been processed.

	topology_name

	Within a topology_file, the topology_name provides a way to
identify the set of resources being acted upon.

	workspace

	If provided, the above variables will be adjusted
and mapped according to this value. Each path will use the following
variables:

topology / topology_file = /<topologies_folder>
layout / layout_file = /<layouts_folder>
resources / resources_file = /resources_folder>
inventory / inventory_file = /<inventories_folder>

If the WORKSPACE environment variable is set, it will be used here. If it
is not, this variable can be set on the command line with -w/--workspace, and defaults
to the location of the PinFile bring provisioned.

Note

schema is not affected by this pathing

 Python Module Index

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 linchpin	

 	
 	
 linchpin.api	

 	
 	
 linchpin.api.context	

 	
 	
 linchpin.api.utils	

 	
 	
 linchpin.cli	

 	
 	
 linchpin.cli.context	

 	
 	
 linchpin.version	

 Index

Index

 _
 | A
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | Y

_

 	
 	__init__() (linchpin.api.LinchpinAPI method)

 	(linchpin.cli.LinchpinCli method)

A

 	
 	async, [1]

 	
 	async_timeout, [1]

C

 	
 	check_mode, [1]

D

 	
 	default_inventories_path, [1]

 	default_layouts_path, [1]

 	default_playbooks_path, [1]

 	default_resources_path, [1]

 	
 	default_schemas_path, [1]

 	default_topologies_path, [1]

 	destroy() (in module linchpin)

 	drop() (in module linchpin)

F

 	
 	find_topology() (linchpin.api.LinchpinAPI method)

 	(linchpin.cli.LinchpinCli method)

G

 	
 	get_cfg() (linchpin.api.context.LinchpinContext method)

 	(linchpin.api.LinchpinAPI method)

 	(linchpin.cli.LinchpinCli method)

 	(linchpin.cli.context.LinchpinCliContext method)

 	
 	get_evar() (linchpin.api.context.LinchpinContext method)

 	(linchpin.api.LinchpinAPI method)

 	(linchpin.cli.LinchpinCli method)

 	(linchpin.cli.context.LinchpinCliContext method)

H

 	
 	hook

I

 	
 	init() (in module linchpin)

 	
 	inventory, [1]

 	inventory_file, [1]

L

 	
 	layout, [1]

 	layout_file, [1]

 	layouts_folder, [1]

 	linchpin (module)

 	linchpin.api (module)

 	linchpin.api.context (module)

 	linchpin.api.utils (module)

 	linchpin.cli (module)

 	linchpin.cli.context (module)

 	linchpin.version (module)

 	linchpin_config, [1]

 	LinchpinAPI (class in linchpin.api)

 	LinchpinCli (class in linchpin.cli)

 	LinchpinCliContext (class in linchpin.cli.context)

 	LinchpinContext (class in linchpin.api.context)

 	load_config() (linchpin.api.context.LinchpinContext method)

 	(linchpin.cli.context.LinchpinCliContext method)

 	load_global_evars() (linchpin.api.context.LinchpinContext method)

 	(linchpin.cli.context.LinchpinCliContext method)

 	
 	log() (linchpin.api.context.LinchpinContext method)

 	(linchpin.cli.context.LinchpinCliContext method)

 	log_debug() (linchpin.api.context.LinchpinContext method)

 	(linchpin.cli.context.LinchpinCliContext method)

 	log_info() (linchpin.api.context.LinchpinContext method)

 	(linchpin.cli.context.LinchpinCliContext method)

 	log_state() (linchpin.api.context.LinchpinContext method)

 	(linchpin.cli.context.LinchpinCliContext method)

 	lp_destroy() (linchpin.api.LinchpinAPI method)

 	(linchpin.cli.LinchpinCli method)

 	lp_down() (linchpin.api.LinchpinAPI method)

 	(linchpin.cli.LinchpinCli method)

 	lp_drop() (linchpin.api.LinchpinAPI method)

 	(linchpin.cli.LinchpinCli method)

 	lp_path, [1]

 	lp_rise() (linchpin.api.LinchpinAPI method)

 	(linchpin.cli.LinchpinCli method)

 	lp_up() (linchpin.api.LinchpinAPI method)

 	(linchpin.cli.LinchpinCli method)

 	lpconfig, [1]

O

 	
 	output, [1]

P

 	
 	PinFile

 	pinfile (linchpin.api.context.LinchpinContext attribute)

 	(linchpin.cli.context.LinchpinCliContext attribute)

 	
 	playbooks_folder, [1]

 	provider

 	provision

R

 	
 	resources, [1]

 	resources_file, [1]

 	
 	rise() (in module linchpin)

 	run_playbook() (linchpin.api.LinchpinAPI method)

 	(linchpin.cli.LinchpinCli method)

S

 	
 	schema, [1]

 	schema_file

 	schemas_folder, [1]

 	set_cfg() (linchpin.api.context.LinchpinContext method)

 	(linchpin.api.LinchpinAPI method)

 	(linchpin.cli.LinchpinCli method)

 	(linchpin.cli.context.LinchpinCliContext method)

 	
 	set_evar() (linchpin.api.context.LinchpinContext method)

 	(linchpin.api.LinchpinAPI method)

 	(linchpin.cli.LinchpinCli method)

 	(linchpin.cli.context.LinchpinCliContext method)

 	setup_logging() (linchpin.api.context.LinchpinContext method)

 	(linchpin.cli.context.LinchpinCliContext method)

T

 	
 	target

 	teardown

 	topologies_folder, [1]

 	
 	topology, [1]

 	topology_file, [1]

 	topology_name

U

 	
 	up() (in module linchpin)

W

 	
 	workspace, [1]

 	(linchpin.api.context.LinchpinContext attribute)

 	(linchpin.cli.context.LinchpinCliContext attribute)

Y

 	
 	yaml2json() (in module linchpin.api.utils)

 linchpin init

linchpin init

Usage: linchpin init

Initializes a linchpin project, which generates an example PinFile, and creates the necessary directory structure for topologies and layouts.

Note

If the PinFile/directories already exists in the current working directory it prompts user with yes/no option to override the existing file structure and PinFile.

Options

	--help

	Print the help text for this command.

Examples

	Usage
	Action

	linchpin init
	initialises the directory structure for up & destroy

See also

	Command-Line Reference

	linchpin up

	linchpin destroy

 linchpin destroy

linchpin destroy

Usage: linchpin destroy [OPTIONS] TARGET

Destroys nodes from the given target(s) in the given PinFile.

Arguments

	TARGET ...

	Destroy ONLY the listed target(s). If omitted, ALL targets in the appropriate PinFile are destroyed.

Options

	-p, --pinfile TEXT

	Use a different PinFile than the one in the current workspace.

	-h, --help

	Print the help text for this command.

Examples

	Usage
	Action

	linchpin destroy
	Destroy all targets in the PinFile in the current working directory

	linchpin destroy <targetname> [<targetname> ...]
	Destroy specific targets in the PinFile in the current working directory

	linchpin destroy -p <pinfile>
	Destroy specific targets in the PinFile specific with -p

See also

	Command-Line Reference

	linchpin init

	linchpin up

 linchpin layout

linchpin layout

Note

This command has not yet been implemented for 1.0.0.

Examples

	Usage
	Action

	
	

See also

	Command-Line Reference

 linchpin topology

linchpin topology

Note

This command has not yet been implemented for 1.0.0.

Examples

	Usage
	Action

	
	

See also

	Command-Line Reference

 linchpin rise

linchpin rise

Deprecated since version 1.0.0.

This command is an alias for linchpin up, and has been
included for backward compatibility with previous versions of linchpin. It will
be removed in a future version of linchpin.

Users of linchpin should switch to using linchpin up as soon as possible.

 Command-Line Reference

Command-Line Reference

Linchpin’s command line interface is availble with the linchpin command,
and comes installed with LinchPin automatically. The command has
subcommands, up, destroy, etc., listed below.

Usage: linchpin [OPTIONS] COMMAND [ARGS]...

Options

	-c, --config PATH

	Path to config file

	-w, --workspace PATH

	Use the specified workspace if the familiar Jenkins
$WORKSPACE environment variable is not set

	-v, --verbose

	Enable verbose output

	--version

	Prints the version and exits

	-h, --help

	Show this message and exit.

Commands

	init

	Initializes a linchpin project

	up

	Provisions nodes from the given target(s) in the given PinFile.

	destroy

	Destroys nodes from the given target(s) in the given PinFile

 linchpin up

linchpin up

Usage: linchpin up [OPTIONS] TARGET

Provisions nodes from the given target(s) in the given PinFile.

Arguments

	TARGET ...

	Provision ONLY the listed target(s). If omitted, ALL targets in the appropriate PinFile are provisioned.

Options

	-p, --pinfile TEXT

	Use a different PinFile than the one in the current workspace.

	-h, --help

	Print the help text for this command.

Examples

	Usage
	Action

	linchpin up
	Provision all targets in the PinFile in the current workspace

	linchpin up <targetname> [<targetname> ...]
	Provision specific targets in the PinFile in the current workspace

	linchpin up -p <pinfile>
	Provision specific targets in the PinFile specified with -p

See also

	Command-Line Reference

	linchpin init

	linchpin destroy

 linchpin invgen

linchpin invgen

Note

This command has not yet been implemented for 1.0.0.

Examples

	Usage
	Action

	
	

See also

	Command-Line Reference

 linchpin validate

linchpin validate

Note

This command has not yet been implemented for 1.0.0.

Examples

	Usage
	Action

	
	

See also

	Command-Line Reference

 linchpin drop

linchpin drop

Deprecated since version 1.0.0.

This command is an alias for linchpin destroy, and has been
included for backward compatibility with previous versions of linchpin. It will
be removed in a future version of linchpin.

Users of linchpin should switch to using linchpin destroy as soon as possible.

 linchpin fetch

linchpin fetch

Usage: linchpin fetch [OPTIONS] [FETCH_TYPE] REMOTE

Fetches a specified linchpin workspace or component from a remote location

Arguments

	FETCH_TYPE...

	Specifies which component of a workspace the user wants to fetch. This can
include topology, layout, resources and hooks. The user can also specify
workspace or leave the field blank to fetch the entire workspace.

	REMOTE

	This is the url or uri of the remote directory. The user should specify the
root of the workspace that they are referring to. If the user cannot
specify the root of the workspace, especially when referring to a git
repository, the user should provide the cloning url to the git repository
and use the –root option to specify where in the git repository the root
of the workspace is.

Options

	-r, --root

	If the url does not point to the root of the workspace, use this option to
specify the root. If the user wants to fetch from multiple workspace, root
may be used to specify multiple workspaces. See examples below.

	-h, --help

	Print the help text for this command.

Examples

	Usage
	Action

	linchpin fetch <url>
	Fetches the entire workspace directory and puts into the current local workspace.

	linchpin fetch topology <url>
	Fetches the topologies directory from the url and puts it into the current workspace.

	linchpin fetch layout <url> --root /workspace1
	Fetches the layouts directory from the subdirectory ‘workspace1’ from the url provided
*note: This is typically used if you cannot specify the root of the workspace by using the URL. It may be particularly helpful when using git repositories.

	linchpin fetch <url> --root workspace1,workspace2
	Fetches the entire workspace from the subdirectories workspace1 and workspace2 and puts into the current working directory. This may be useful if one directory contains multiple workspaces and the user would like to fetch all contents and put into one workspace locally.

 LinchPin 1.0.0 RELEASE NOTES

LinchPin 1.0.0 RELEASE NOTES

Enhancements

	Better python package
- Reduce noise by containing the library under the linchpin namespace

	Beaker provisioner

	Convert from linchpin_config.yml to linchpin.conf
- Add tooling to load configurations from linchpin.conf

	LinchPin Context to manage environment

	Unit Tests
- Testing of python libraries, including API, Context, CLI, etc.
- Created dummy provisining provider to perform testing

	Hooks
- pre / post hooks for both up and destroy actions

	Direct credential management
- All core cloud providers (gce, ec2, openstack) can authenticate using their traditional method
- An override can be passed via the CLI/API using the variable creds_path

	Customizable workspace in the CLI/API
- LinchPin now provides a workspace option. The PinFile, topology, layout and hooks live here.

	Context provides logging to a centralized log file, console (stdout/stderr), or both

	OpenShift provisioning provider

	

Documentation Improvements

	Beaker topology

	Inline API documentation now on readthedocs

Bug Fixes

	#177 Missing dependency for python-krbV

While this bug indicated wontfix and was closed, the improvement was instead to add functionality to the setup.py. This created the ability to ship extra dependencies by simply performing a pip install linchpin[krbV].

	#202 linchpin-config.yml inconsistencies

This lead to the rework of the configuration into linchpin.conf, and the Context objects

	#225 Linchpin multiple targets no longer work

When running linchpin up/destroy actions, if no target(s) are passed, all targets are acted upon. This failed after reworking the linchpin.conf and adding the Context object.

	#226 Returned results from API calls (up and destroy) when console set to False does not contain failures

This bug prevented certain users of the LinchPin API from gathering results from the Ansible runs. To that end, the _invoke_playbook method was reworked to return the results in a list of TaskResult objects.

 LinchPin 1.0.1 RELEASE NOTES

LinchPin 1.0.1 RELEASE NOTES

LinchPin 1.0.1 is a bugfix release

Bug Fixes

	linchpin destroy duffy error after 1.0 upgrade [https://github.com/CentOS-PaaS-SIG/linchpin/issues/263]

	1.0 error with linchpin init/linchpin up [https://github.com/CentOS-PaaS-SIG/linchpin/issues/264]

	linchpin rise/up error since upgrade to 1.0.0 [https://github.com/CentOS-PaaS-SIG/linchpin/issues/267]

	libvirt provisioning does not work on centos/rhel machines [https://github.com/CentOS-PaaS-SIG/linchpin/issues/269]

	Unable to get topology file to pass schema validation [https://github.com/CentOS-PaaS-SIG/linchpin/issues/271]

	Authorization failing with linchpin 1.0.0 [https://github.com/CentOS-PaaS-SIG/linchpin/issues/274]

	Inventory generation fails as resource outputs are not generated [https://github.com/CentOS-PaaS-SIG/linchpin/issues/275]

Enhancements

	Make a default path for credentials [https://github.com/CentOS-PaaS-SIG/linchpin/issues/280]

 LinchPin 1.0.2 RELEASE NOTES

LinchPin 1.0.2 RELEASE NOTES

LinchPin 1.0.2 is a bugfix release

Bug Fixes

	Make a default path for credentials [https://github.com/CentOS-PaaS-SIG/linchpin/issues/279]

	Updates to beaker provisioner [https://github.com/CentOS-PaaS-SIG/linchpin/pull/288]

	Recommended fixes from landscape.io [https://github.com/CentOS-PaaS-SIG/linchpin/pull/290]

	Remove .yaml from output resources files [https://github.com/CentOS-PaaS-SIG/linchpin/pull/298]

	installing deps requires -y flag [https://github.com/CentOS-PaaS-SIG/linchpin/pull/308]

Enhancements

	More documentation updates [https://github.com/CentOS-PaaS-SIG/linchpin/pull/281]

 <no title>

 LinchPin can provision or teardown any number of resources. If a PinFile has multiple targets, and is called without a target name, all targets will be executed. Given this PinFile.

example:
 topology: example-topology.yml
 layout: example-layout.yml

example2:
 topology: example2-topology.yml
 layout: example2-layout.yml

dummy1:
 topology: dummy-cluster.yml
 layout: dummy-layout.yml

A call to linchpin up would provision and generate an Ansible static inventory for each target.

$ linchpin up
target: dummy1, action: up

target: example2, action: up

target: example, action: up

 <no title>

 The inventory_layout or layout mean the same thing, a YAML definition for providing an Ansible static inventory file, based upon the provided topology. A YAML layout is stored in a layout_file.

inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 example-node:
 count: 3
 host_groups:
 - example
 host_groups:
 example:
 vars:
 test: one

The above YAML allows for interpolation of the ip address, or hostname as a component of a generated inventory. A host group called example will be added to the Ansible static inventory, along with a section called example:vars containing test = one. The resulting static Ansible inventory is shown here.

[example:vars]
test = one

[example]
web-2.example.net hostname=web-2.example.net
web-1.example.net hostname=web-1.example.net
web-0.example.net hostname=web-0.example.net

[all]
web-2.example.net hostname=web-2.example.net
web-1.example.net hostname=web-1.example.net
web-0.example.net hostname=web-0.example.net

 <no title>

 Running linchpin init will generate the directory structure needed, along with an example PinFile, topology, and layout files. One important option here, is the –workspace. When passing this option, the system will use this as the location for the structure. The default is the current directory.

$ export WORKSPACE=/tmp/workspace
$ linchpin init
PinFile and file structure created at /tmp/workspace
$ cd /tmp/workspace/
$ tree
.
├── credentials
├── hooks
├── inventories
├── layouts
│ └── example-layout.yml
├── PinFile
├── resources
└── topologies
 └── example-topology.yml

At this point, one could execute linchpin up and provision a single libvirt virtual machine, with a network named linchpin-centos71. An inventory would be generated and placed in inventories/libvirt.inventory. This can be known by reading the topologies/example-topology.yml and gleaning out the topology_name value.

 <no title>

 Once a PinFile, topology, and optionally a layout are in place, provisioning can happen.

Note

For this section, the dummy tooling will be used as it is much
simpler and doesn’t require anything extra to be configured. The dummy
provider creates a temporary file, which represents provisioned hosts.
If the temporary file does not have any data, hosts have not been
provisioned, or they have been recently destroyed.

The dummy topology, layout, and PinFile are shown above in the appropriate sections. The tree would be very simple.

$ tree
.
├── inventories
├── layouts
│ └── dummy-layout.yml
├── PinFile
├── resources
└── topologies
 └── dummy-cluster.yml

Performing the command linchpin up should generate resources and inventory files based upon the topology_name value. In this case, is dummy_cluster.

$ linchpin up
target: dummy1, action: up

$ ls {resources,inventories}/dummy*
inventories/dummy_cluster.inventory resources/dummy_cluster.output

To verify resources with the dummy cluster, check /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-0.example.net
web-1.example.net
web-2.example.net

This is reflected in both the resources (not shown) and inventory files.

[example:vars]
test = one

[example]
web-2.example.net hostname=web-2.example.net
web-1.example.net hostname=web-1.example.net
web-0.example.net hostname=web-0.example.net

[all]
web-2.example.net hostname=web-2.example.net
web-1.example.net hostname=web-1.example.net
web-0.example.net hostname=web-0.example.net

 <no title>

 The topology is a set of rules, written in YAML, that define the way the provisioned systems should look after executing linchpin. Generally, the topology and topology_file values are interchangeable, except where the YAML is specifically indicated. A simple dummy topology is shown here.

topology_name: "dummy_cluster" # topology name
resource_groups:
 -
 resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 -
 name: "web"
 type: "dummy_node"
 count: 3

This topology describes a set of three (3) dummy systems that will be provisioned when linchpin up is executed. The names of the systems will be ‘web_#.example.net’, where # indicates the count (usually 0, 1, and 2). Once provisioned, the resources will be output and stored for reference. The output resources data can then be used to generated an inventory, or passed as part of a linchpin destroy action.

 <no title>

 A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a resource for provisioning. An example Pinfile is shown.

dummy1:
 topology: dummy-cluster.yml
 layout: dummy-layout.yml

The PinFile collects the given topology and layout into one place. Many targets can be referenced in a single PinFile.

The target above is named dummy1. This target is the reference to the topology named dummy-cluster.yml and layout named dummy-layout.yml. The PinFile can also contain definitions of hooks that can be executed at certain pre-defined states.

 <no title>

 As expected, LinchPin can also perform teardown of resources. A teardown action generally expects that resources have been provisioned. However, because Ansible is idempotent, linchpin destroy will only check to make sure the resources are up. Only if the resources are already up will the teardown happen.

The command linchpin destroy will either use resources and/or topology files to determine the proper teardown procedure. The dummy Ansible role does not use the resources, only the topology during teardown.

$ linchpin destroy
target: dummy1, action: destroy

$ cat /tmp/dummy.hosts
-- EMPTY FILE --

Note

The teardown functionality is slightly more limited around ephemeral
resources, like networking, storage, etc. It is possible that a network
resource could be used with multiple cloud instances. In this way,
performing a linchpin destroy does not teardown certain resources. This
is dependent on each providers implementation.

See specific implementations for each of the providers [https://github.com/CentOS-PaaS-SIG/linch-pin/tree/develop/linchpin/provision/roles].

 LinchPin 1.0.0 ROADMAP

LinchPin 1.0.0 ROADMAP

Enhancements

	Better python package
- Reduce noise by containing the library under the linchpin namespace

	Beaker provisioner

	Convert from lincnpin_config.yml to linchpin.conf
- Add tooling to load configurations from linchpin.conf

	LinchPin Context to manage environment

	Unit Tests
- Testing of python libraries, including API, Context, CLI, etc.
- Created dummy provisining provider to perform testing

	Hooks
- pre / post hooks for both up and destroy actions

	Direct credential management
- All core cloud providers (gce, ec2, openstack) can authenticate using their traditional method
- An override can be passed via the CLI/API using the variable creds_path

	Customizable workspace in the CLI/API
- LinchPin now provides a workspace option. The PinFile, topology, layout and hooks live here.

	Context provides logging to a centralized log file, console (stdout/stderr), or both

	OpenShift provisioning provider

	

Documentation Improvements

	Beaker topology

	Inline API documentation now on readthedocs

Bug Fixes

	#177 Missing dependency for python-krbV

While this bug indicated wontfix and was closed, the improvement was instead to add functionality to the setup.py. This created the ability to ship extra dependencies by simply performing a pip install linchpin[krbV].

	#202 linchpin-config.yml inconsistencies

This lead to the rework of the configuration into linchpin.conf, and the Context objects

	#225 Linchpin multiple targets no longer work

When running linchpin up/destroy actions, if no target(s) are passed, all targets are acted upon. This failed after reworking the linchpin.conf and adding the Context object.

	#226 Returned results from API calls (up and destroy) when console set to False does not contain failures

This bug prevented certain users of the LinchPin API from gathering results from the Ansible runs. To that end, the _invoke_playbook method was reworked to return the results in a list of TaskResult objects.

 LinchPin 1.1.x ROADMAP - July 31, 2017?

LinchPin 1.1.x ROADMAP - July 31, 2017?

More Unit Tests #257

	coverage

	flake8

	cli fail testing

	api fail testing

	linchpin-lib pass/fail testing

Integration Testing #247

	testing of each provider set in core (openstack, ec2, gce, libvirt)

Regression Testing

	More research needed

Bug Fixes from 1.0.0 release

It’s inevitable, there will be many bugs to fix. :)

Cloud-Init functionality #111 #148

	Libvirt

	openstack userdata tooling

	aws userdata??

	gce userdata??

State Logging

	Report transitioning between states
- (prehooks -> up -> posthooks -> resources -> postreshooks? -> inventory_generation -> postgenhooks)

Output / Exception Handling

	The basic exception handling is in place. CLI output works, but isn’t perfect.

	Refine the API to return messages, let the interface handle how to display them.

Investigate dependency pinning/Investigate reducing dependencies (separate packages??)

	There are a lot of packages that can probably be removed

	Break out drivers to a separate package (core pkgs may become linchpin-drivers-core or somesuch)

	Create packages for linchpin library and linchpin-cli
- Already have some of this, but it’s not clean)

Upgrade to Ansible 2.3

	Handle new magic_vars

	Verify/Adapt any API changes work in LinchPin

Python 3 conversion

Ansible is ready (pretty much), so should we be.

 LinchPin 1.3.x ROADMAP - January 1, 2018???

LinchPin 1.3.x ROADMAP - January 1, 2018???

Network Provisioning

	Teardown options

Asynchronous Target Provisioning

	Using a distributed queue to provision targets and get their states/outputs ??? (more research needed)

Linchpin Status tracking

	Use a database to track status multiple targets.

	Give unique identifiers to target/topology/layout triples for naming

 LinchPin 1.2.x ROADMAP - October 1, 2017??

LinchPin 1.2.x ROADMAP - October 1, 2017??

Authentication Driver for Libvirt and others

	Libvirt – PolicyKit/SSH/tcp integration/sudo (become) methods

Reworking Schema

	Use cerberus on a driver by driver basis to validate schemas

Zuul Integration

Sean Myers is working on this

New providers

	Azure

	RHEV RHEL

	Foreman

Rework on Roles

	Small playbooks that do provision/teardown per provider

	Create a plugin model for ephemeral services

Split out Linchpin API/REST API from cli

	API becomes linchpin pkg (libraries and playbooks)

	CLI becomes linchpin-cli pkg (just cli tooling)

Hooks

	Built-in Hooks
- inventory generator
- resource outputter
- schema validation

	Global hooks functionality

	State tracking:
- on_success/on_failure flags for hooks and actions
- Implement retry in hooks on failure

REST Service

	simple rest service interface

_static/comment.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

nav.xhtml

 Table of Contents

 		LinchPin documentation

 		Introduction

 		Installation

 		Minimal Software Requirements

 		Installing LinchPin

 		Source Installation

 		Getting Started

 		Foreword

 		Terminology

 		Topology

 		Inventory Layout

 		PinFile

 		Running linchpin

 		Initialization (init)

 		Provisioning (up)

 		Teardown (destroy)

 		Multi-Target Actions

 		Configuration

 		General Configuration

 		Workspace

 		Initialization

 		PinFile

 		Topologies

 		Inventory Layouts

 		Topologies

 		Topology

 		Structure

 		Layouts

 		Structure

 		Ansible Variables

 		Inputs

 		Built-ins

 		Defaults

 		Example Topologies

 		AWS Topologies

 		AWS EC2 Multiple Accounts

 		AWS EC2 Keypair

 		AWS CFN EXAMPLE1

 		AWS CFN EXAMPLE2

 		AWS FULLSTACK EXAMPLE

 		AWS EC2 Security Groups EXAMPLE

 		Openstack Topologies

 		Openstack Server

 		Openstack Keypair

 		Openstack Cinder Volume

 		Openstack Swift Container

 		Openstack Container & Volume

 		Openstack Full Stack

 		Steps to provision Single Host

 		Credentials

 		Topology

 		Provision

 		OpenShift Topologies

 		Inventory Generation

 		Accessing OpenShift Resources

 		Note About Teardown

 		Example Topologies

 		Gcloud Topologies

 		Google Cloud Topologies

 		Duffy Topologies

 		Simple Duffy Cluster

 		Beaker Topologies

 		Beaker Server

 		Requiring Specific Hosts

 		Libvirt Topologies

 		Simple Libvirt Topology

 		Complete Libvirt Topology

 		Hybrid Topologies

 		Hybrid Topology1 (