
LinchPin Documentation
Release 1.0.3

Samvaran Kashyap Rallabandi

Sep 12, 2017

Contents

1 About LinchPin 1
1.1 Introduction . 1
1.2 Installation . 1
1.3 Getting Started . 3
1.4 Configuration . 8
1.5 Example Topologies . 15
1.6 Python API Reference . 36
1.7 Glossary . 43

2 Indices and tables 47

Python Module Index 49

i

ii

CHAPTER 1

About LinchPin

Welcome to the LinchPin documentation!

LinchPin is a hybrid cloud orchestration tool. Its intended purpose is managing cloud resources across multiple
infrastructures. These resources can be provisioned, decommissioned, and configured all using a topology file and a
simple command-line interface.

Additionally, LinchPin provides a Python API (and soon a RESTful API) for managing resources. The cloud manage-
ment component is backed by Ansible <https://ansible.com>. The front-end API manages the interface between the
command line (or other interfaces) and calls to the Ansible API.

This documentation covers the current released version of LinchPin (1.0.3). For recent features, we attempt to note in
each section the version of LinchPin where the feature was added.

Introduction

Before getting heavily into LinchPin, let’s cover some of the basics. The topics below will cover everything needed to
get going with LinchPin. For more advanced topics, refer to the main documentation page.

• Installation

• Getting Started

• Configuration

See also:

User Mailing List Subscribe and participate. A great place for Q&A

irc.freenode.net #linchpin IRC chat channel

Installation

1

https://www.redhat.com/mailman/listinfo/linchpin
http://irc.freenode.net

LinchPin Documentation, Release 1.0.3

Topics

• Installation

– Minimal Software Requirements

– Installing LinchPin

* Source Installation

Currently, LinchPin can be run from any machine with Python 2.6+ (Python 3.x is currently experimental), and requires
Ansible 2.2.1. There are many other dependencies, depending on the provider. The core providers are OpenStack,
Amazon EC2, and Google Compute Cloud. If enabled on the host system, Libvirt can also be used out of the box.

Refer to your specific operating system for directions on the best method to install Python, if it is not already installed.
Many modern operating systems will have Python already installed. This is typically the case in all versions of Linux
and OS X, but the version present might be older than the version needed for use with Ansible. You can check the
version by typing python --version.

If the system installed version of Python is older than 2.6, many systems will provide a method to install updated
versions of Python in parallel to the system version (eg. virtualenv).

Minimal Software Requirements

As LinchPin is heavily dependent on Ansible, this is a core requirement. Beyond installing Ansible, there are several
packages that need to be installed:

* libffi-devel

* openssl-devel

* libyaml-devel

* gmp-devel

* libselinux-python

* make

For Fedora/CentOS/RHEL the necessary packages should be installed.

$ sudo yum install python-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel libselinux-python make

Note: Fedora will present an output suggesting the use of dnf as a replacement for yum.

Installing LinchPin

Note: Currently, linchpin is not packaged for any major Operating System. If you’d like to contribute your time to
create a package, please contact the linchpin mailing list.

Create a virtualenv to install the package using the following sequence of commands (requires virtualenvwrapper).

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip install linchpin
..snip..

2 Chapter 1. About LinchPin

mailto:linchpin@redhat.com

LinchPin Documentation, Release 1.0.3

To deactivate the virtualenv.

(linchpin) $ deactivate
$

Then reactivate the virtualenv.

$ workon linchpin
(linchpin) $

If testing or docs is desired, additional steps are required.

(linchpin) $ pip install linchpin[docs]
(linchpin) $ pip install linchpin[tests]

Source Installation

As an alternative, LinchPin can be installed via github. This may be done in order to fix a bug, or contribute to the
project.

(linchpin) $ git clone git://github.com/CentOS-PaaS-SIG/linch-pin
..snip..
(linchpin) $ pip install ./linch-pin

See also:

User Mailing List Subscribe and participate. A great place for Q&A

irc.freenode.net #linchpin IRC chat channel

Getting Started

Topics

• Getting Started

– Foreword

– Terminology

* Topology

* Inventory Layout

* PinFile

– Running linchpin

* Initialization (init)

* Provisioning (up)

* Teardown (destroy)

* Multi-Target Actions

1.3. Getting Started 3

https://www.redhat.com/mailman/listinfo/linchpin
http://irc.freenode.net

LinchPin Documentation, Release 1.0.3

Foreword

Now that LinchPin is installed according to Installation, it is time to see how it works. This guide is essentially a quick
start guide to getting up and running with LinchPin.

LinchPin is a command-line utility, a Python API, and Ansible playbooks. This document focuses on the command-
line interface.

Terminology

LinchPin, while it attempts to be a simple tool for provisioning resources, still does have some complexity. To that
end, this section attempts to define the minimal bits of terminology needed to understand how to use the linchpin
command-line utility.

Topology

The topology is a set of rules, written in YAML, that define the way the provisioned systems should look after executing
linchpin. Generally, the topology and topology_file values are interchangeable, except where the YAML is specifically
indicated. A simple dummy topology is shown here.

topology_name: "dummy_cluster" # topology name
resource_groups:

-
resource_group_name: "dummy"
resource_group_type: "dummy"
resource_definitions:

-
name: "web"
type: "dummy_node"
count: 3

This topology describes a set of three (3) dummy systems that will be provisioned when linchpin up is executed.
The names of the systems will be ‘web_#.example.net’, where # indicates the count (usually 0, 1, and 2). Once
provisioned, the resources will be output and stored for reference. The output resources data can then be used to
generated an inventory, or passed as part of a linchpin destroy action.

Inventory Layout

The inventory_layout or layout mean the same thing, a YAML definition for providing an Ansible static inventory file,
based upon the provided topology. A YAML layout is stored in a layout_file.

inventory_layout:

vars:
hostname: __IP__

hosts:
example-node:

count: 3
host_groups:

- example
host_groups:
example:

4 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

vars:
test: one

The above YAML allows for interpolation of the ip address, or hostname as a component of a generated inventory.
A host group called example will be added to the Ansible static inventory, along with a section called example:vars
containing test = one. The resulting static Ansible inventory is shown here.

[example:vars]
test = one

[example]
web-2.example.net hostname=web-2.example.net
web-1.example.net hostname=web-1.example.net
web-0.example.net hostname=web-0.example.net

[all]
web-2.example.net hostname=web-2.example.net
web-1.example.net hostname=web-1.example.net
web-0.example.net hostname=web-0.example.net

PinFile

A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a
resource for provisioning. An example Pinfile is shown.

dummy1:
topology: dummy-cluster.yml
layout: dummy-layout.yml

The PinFile collects the given topology and layout into one place. Many targets can be referenced in a single PinFile.

The target above is named dummy1. This target is the reference to the topology named dummy-cluster.yml and layout
named dummy-layout.yml. The PinFile can also contain definitions of hooks that can be executed at certain pre-defined
states.

Running linchpin

As stated above, this guide is about using the command-line utility, linchpin. First off, simply execute linchpin
to see some options.

$ linchpin
Usage: linchpin [OPTIONS] COMMAND [ARGS]...

linchpin: hybrid cloud orchestration

Options:
-c, --config PATH Path to config file
-w, --workspace PATH Use the specified workspace if the familiar Jenkins

$WORKSPACE environment variable is not set
-v, --verbose Enable verbose output
--version Prints the version and exits
--creds-path PATH Use the specified credentials path if WORKSPACE

environment variable is not set
-h, --help Show this message and exit.

1.3. Getting Started 5

LinchPin Documentation, Release 1.0.3

Commands:
init Initializes a linchpin project.
up Provisions nodes from the given target(s) in...
destroy Destroys nodes from the given target(s) in...

What can be seen immediately is a simple description, along with options and arguments that can be passed to the
command. The three commands found near the bottom of this help are where the focus will be for this document.

Initialization (init)

Running linchpin init will generate the directory structure needed, along with an example PinFile, topology,
and layout files. One important option here, is the –workspace. When passing this option, the system will use this as
the location for the structure. The default is the current directory.

$ export WORKSPACE=/tmp/workspace
$ linchpin init
PinFile and file structure created at /tmp/workspace
$ cd /tmp/workspace/
$ tree
.
- credentials
- hooks
- inventories
- layouts
| - example-layout.yml
- PinFile
- resources
- topologies

- example-topology.yml

At this point, one could execute linchpin up and provision a single libvirt virtual machine, with a network named
linchpin-centos71. An inventory would be generated and placed in inventories/libvirt.inventory. This
can be known by reading the topologies/example-topology.yml and gleaning out the topology_name
value.

Provisioning (up)

Once a PinFile, topology, and optionally a layout are in place, provisioning can happen.

Note: For this section, the dummy tooling will be used as it is much simpler and doesn’t require anything extra to be
configured. The dummy provider creates a temporary file, which represents provisioned hosts. If the temporary file
does not have any data, hosts have not been provisioned, or they have been recently destroyed.

The dummy topology, layout, and PinFile are shown above in the appropriate sections. The tree would be very simple.

$ tree
.
- inventories
- layouts
| - dummy-layout.yml
- PinFile
- resources
- topologies

- dummy-cluster.yml

6 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

Performing the command linchpin up should generate resources and inventory files based upon the topol-
ogy_name value. In this case, is dummy_cluster.

$ linchpin up
target: dummy1, action: up

$ ls {resources,inventories}/dummy*
inventories/dummy_cluster.inventory resources/dummy_cluster.output

To verify resources with the dummy cluster, check /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-0.example.net
web-1.example.net
web-2.example.net

This is reflected in both the resources (not shown) and inventory files.

[example:vars]
test = one

[example]
web-2.example.net hostname=web-2.example.net
web-1.example.net hostname=web-1.example.net
web-0.example.net hostname=web-0.example.net

[all]
web-2.example.net hostname=web-2.example.net
web-1.example.net hostname=web-1.example.net
web-0.example.net hostname=web-0.example.net

Teardown (destroy)

As expected, LinchPin can also perform teardown of resources. A teardown action generally expects that resources
have been provisioned. However, because Ansible is idempotent, linchpin destroy will only check to make
sure the resources are up. Only if the resources are already up will the teardown happen.

The command linchpin destroywill either use resources and/or topology files to determine the proper teardown
procedure. The dummy Ansible role does not use the resources, only the topology during teardown.

$ linchpin destroy
target: dummy1, action: destroy

$ cat /tmp/dummy.hosts
-- EMPTY FILE --

Note: The teardown functionality is slightly more limited around ephemeral resources, like networking, storage,
etc. It is possible that a network resource could be used with multiple cloud instances. In this way, performing a
linchpin destroy does not teardown certain resources. This is dependent on each providers implementation.

See specific implementations for each of the providers.

1.3. Getting Started 7

https://github.com/CentOS-PaaS-SIG/linch-pin/tree/develop/linchpin/provision/roles

LinchPin Documentation, Release 1.0.3

Multi-Target Actions

LinchPin can provision or teardown any number of resources. If a PinFile has multiple targets, and is called without
a target name, all targets will be executed. Given this PinFile.

example:
topology: example-topology.yml
layout: example-layout.yml

example2:
topology: example2-topology.yml
layout: example2-layout.yml

dummy1:
topology: dummy-cluster.yml
layout: dummy-layout.yml

A call to linchpin up would provision and generate an Ansible static inventory for each target.

$ linchpin up
target: dummy1, action: up

target: example2, action: up

target: example, action: up

See also:

linchpincli Linchpin Command-Line Interface

User Mailing List Subscribe and participate. A great place for Q&A

irc.freenode.net #linchpin IRC chat channel

Configuration

Before resources can be provisioned in any of the environments through the use of linchpin, the environment must be
configured to specify the resources required.

General Configuration

Managing LinchPin requires a few configuration files. Beyond linchpin.conf, there are a few other configurations
that need to be created. When running linchpin, four different locations are checked for linchpin.conf files. Files are
checked in the following order:

1. linchpin/library/path/linchpin.conf

2. /etc/linchpin.conf

3. ~/.config/linchpin/linchpin.conf

4. path/to/workspace/linchpin.conf

The linchpin configuration parser supports overriding and extension of configurations. Therefore, after the files are
checked for existence, the existing configuration files are read and if linchpin finds two or more different configuration
files to contain the same configuration section header, the header that was parsed more recently will provide the
configuration for that section. Therefore, if the user wants to add their own configurations to their linchpin workpace,

8 Chapter 1. About LinchPin

https://www.redhat.com/mailman/listinfo/linchpin
http://irc.freenode.net

LinchPin Documentation, Release 1.0.3

the the user should add their configurations to a linchpin.conf file in the root of their workspace. This way, their file
will be parsed last and their configurations will take precedence over all other configurations.

To add your own configurations, simply create a linchpin.conf file in the root of your workspace using your preferred
text editor and write configuration in a .ini style. Here’s an example:

:: [Section Header] key1 = value1 key2 = value2

Topics

• General Configuration

– Workspace

– Initialization

– PinFile

– Topologies

– Inventory Layouts

Workspace

Initialization

Running linchpin init will generate the directory structure needed, along with an example PinFile, topology,
and layout files. One important option here, is the –workspace. When passing this option, the system will use this as
the location for the structure. The default is the current directory.

$ export WORKSPACE=/tmp/workspace
$ linchpin init
PinFile and file structure created at /tmp/workspace
$ cd /tmp/workspace/
$ tree
.
- credentials
- hooks
- inventories
- layouts
| - example-layout.yml
- PinFile
- resources
- topologies

- example-topology.yml

At this point, one could execute linchpin up and provision a single libvirt virtual machine, with a network named
linchpin-centos71. An inventory would be generated and placed in inventories/libvirt.inventory. This
can be known by reading the topologies/example-topology.yml and gleaning out the topology_name
value.

PinFile

A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a
resource for provisioning. An example Pinfile is shown.

1.4. Configuration 9

LinchPin Documentation, Release 1.0.3

dummy1:
topology: dummy-cluster.yml
layout: dummy-layout.yml

The PinFile collects the given topology and layout into one place. Many targets can be referenced in a single PinFile.

The target above is named dummy1. This target is the reference to the topology named dummy-cluster.yml and layout
named dummy-layout.yml. The PinFile can also contain definitions of hooks that can be executed at certain pre-defined
states.

Topologies

The topology is a set of rules, written in YAML, that define the way the provisioned systems should look after executing
linchpin. Generally, the topology and topology_file values are interchangeable, except where the YAML is specifically
indicated. A simple dummy topology is shown here.

topology_name: "dummy_cluster" # topology name
resource_groups:

-
resource_group_name: "dummy"
resource_group_type: "dummy"
resource_definitions:

-
name: "web"
type: "dummy_node"
count: 3

This topology describes a set of three (3) dummy systems that will be provisioned when linchpin up is executed.
The names of the systems will be ‘web_#.example.net’, where # indicates the count (usually 0, 1, and 2). Once
provisioned, the resources will be output and stored for reference. The output resources data can then be used to
generated an inventory, or passed as part of a linchpin destroy action.

Inventory Layouts

The inventory_layout or layout mean the same thing, a YAML definition for providing an Ansible static inventory file,
based upon the provided topology. A YAML layout is stored in a layout_file.

inventory_layout:

vars:
hostname: __IP__

hosts:
example-node:

count: 3
host_groups:

- example
host_groups:
example:

vars:
test: one

The above YAML allows for interpolation of the ip address, or hostname as a component of a generated inventory.
A host group called example will be added to the Ansible static inventory, along with a section called example:vars
containing test = one. The resulting static Ansible inventory is shown here.

10 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

[example:vars]
test = one

[example]
web-2.example.net hostname=web-2.example.net
web-1.example.net hostname=web-1.example.net
web-0.example.net hostname=web-0.example.net

[all]
web-2.example.net hostname=web-2.example.net
web-1.example.net hostname=web-1.example.net
web-0.example.net hostname=web-0.example.net

Topologies

A topology is a specification of which resources from which environments are being requested from a linchpin run.
Since each environment has different sets of requirements, the exact values and structure of a topology file will vary
based on where resources are to be provisioned. In this document some broad discussion of topologies will be ad-
dressed. More extensive examples pertaining to specific environments will be given in a separate section of the
documentation.

Topology

Broadly speaking, a linchpin topology file is a list of resources to be provisioned from each environment. It is possible
and a very common use case to list multiple resources, even multiple types of resources, in a single topology file. A
less common use case, but still supported, is to provision multiple resources across multiple environments.

The topology file does not designate the format of the output, nor map the particular resources that get provisioned
into output inventory groups. That is the work of the layouts file.

Structure

A topology is a YAML file or a JSON file formatted with a single top-level object.

There are two top level keys in a topology.

The first key is named topology_name and is a relatively free-form string that identifies the user-friendly name for this
particular topology. For best practices, this should resemble the file name and possibly the name of the key from the
PinFile.

The second key is the resource_groups key. This key is an array of objects.

Resource Group

Each entry in the resource_group key array is itself an object hash with three object keys.

The first key is resource_group_name, and is a user-friendly name for the resources that will be provisioned from this
group definition.

The second key is res_group_type and must be a string of a limited set. This set must match to the particular envi-
ronment. Some environments can define different types of valid values. As an example, the value duffy will define a
resource type to be provisioned in a Duffy architecture, whereas the value beaker will contain definitions of a set of
servers to be provisioned in a Beaker environment.

1.4. Configuration 11

LinchPin Documentation, Release 1.0.3

The third key is res_defs. This key defines an array of objects. Each of these objects’ exact form will be dictated by
the value of res_group_type. To see more information on the structure of these values, check the example topologies
section of this documentation.

Layouts

A layout file is the current mechanism to define mappings between the resources provisioned out of the topology and
the Ansible inventory groups that are output.

Topics

• Layouts

– Structure

* Hosts

Structure

As with a topology file, a layout file is a YAML file or a JSON file with a single root object hash. There is one top-level
entry in the hash, named inventory_layout. The inventory_layout value is itself an object that has a few fields inside of
it.

Hosts

The first hash value is hosts, which contains an object hash as a value. The keys of that hash are the names of hosts
that have been provisioned out of the topology. Each host has two properties, count and host_groups.

The count property says how many of the topology hosts are to share this inventory hostname. For instance, if the
host is “webserver” and count is 2, then this will generate hosts in the output inventory named “webserver-1” and
“webserver-2”. This value is optional and defaults to 1 when it’s not present.

The host_groups field contains an array of Ansible inventory groups into which all the hosts under this hash will get
placed. This value is optional and will default to an empty list when not filled. In that case, the host will be named
into the inventory with its host vars, and added to default ‘all’ group.

As an example, assume you provisioned three hosts and you wanted one database and two applicaiton hosts. Your
goal is to get to an Ansible inventory that looks like this:

[backend]
database

[frontend]
webhost-1
webhost-2

[ldap]
database
webhost-1
webhost-2

[security_updates]
database

12 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

Then your hosts object would look like this:

hosts:
database:
count: 1
host_groups:

- backend
- ldap
- security_updates

webhost:
count: 2
host_groups:

- ldap
- frontend

Ansible Variables

Topics

• Ansible Variables

– Inputs

– Built-ins

– Defaults

Inputs

The following variables can be set using ansible extra_vars, including in the [evars] section of linchpin.conf, to
alter linchpin’s default behavior.

topology

topology_file A set of rules, written in YAML, that define the way the provisioned systems should look after executing
linchpin.

Generally, the topology and topology_file values are interchangeable, except after the file has been processed.

schema

schema_file JSON description of the format for the topology. (schema_v3, schema_v4 are still available)

layout

layout_file YAML definition for providing an ansible (currently) static inventory file, based upon the provided topol-
ogy.

inventory

inventory_file If layout / layout_file is provided, this will be the location of the resulting ansible inventory.

linchpin_config if passed on the command line with -c/--config, should be an ini-style config file with linchpin
default configurations (see BUILT-INS below for more information)

resources

resources_file File with the resource outputs in a JSON formatted file. Useful for teardown (destroy,down) actions
depending on the provider.

1.4. Configuration 13

LinchPin Documentation, Release 1.0.3

workspace If provided, the above variables will be adjusted and mapped according to this value. Each path will use
the following variables:

topology / topology_file = /<topologies_folder>
layout / layout_file = /<layouts_folder>
resources / resources_file = /resources_folder>
inventory / inventory_file = /<inventories_folder>

.. note:: schema is not affected by this pathing

If the WORKSPACE environment variable is set, it will be used here. If it is not, this variable can be set on the
command line with -w/--workspace, and defaults to the location of the PinFile bring provisioned.

Built-ins

These variables SHOULD NOT be changed!

lp_path base path for linchpin playbooks and python api

lpconfig <lp_path>/linchpin.conf, unless overridden by linchpin_config

Defaults

While the variables here can also be passed as extra-vars, the values are the defaults and it is recommended not to
change them. These values are defined in <lp_path>/linchpin.conf by default.

async (boolean, default: False)

Used to enable asynchronous provisioning/teardown

async_timeout (int, default: 1000)

How long the resouce collection (formerly outputs_writer) process should wait

output (boolean, default: True, previous: no_output)

Controls whether resources will be written to the resources_file

check_mode (boolean, default: no)

This option does nothing at this time, though it may eventually be used for dry-run functionality based upon the
provider

schemas_folder (file_path, default: schemas)

relative path to schemas

playbooks_folder (file_path, default: provision)

relative path to playbooks, only useful to the linchpin API and CLI

layouts_folder (file_path, default: layouts)

relative path to layouts

topologies_folder (file_path, default: topologies)

relative path to topologies

default_schemas_path (file_path, default: <lp_path>/defaults/<schemas_folder>)

default path to schemas, absolute path. Can be overridden by passing schema / schema_file.

14 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

default_playbooks_path (file_path, default: <lp_path>/defaults/playbooks_folder>)

default path to playbooks location, only useful to the linchpin API and CLI

default_layouts_path (file_path, default: <lp_path>/defaults/<layouts_folder>)

default path to inventory layout files

default_topologies_path (file_path, default: <lp_path>/defaults/<topologies_folder>)

default path to topology files

default_resources_path (file_path, default: <lp_path>/defaults/<resources_folder>, formerly: outputs)

landing location for resources output data

default_inventories_path (file_path, default: <lp_path>/defaults/<inventories_folder>)

landing location for inventory outputs

See also:

Glossary Glossary

Example Topologies

Before using Linchpin, here are few Linchpin topology examples.

AWS Topologies

Topics

• AWS Topologies

– AWS EC2 Multiple Accounts

– AWS EC2 Keypair

– AWS CFN EXAMPLE1

– AWS CFN EXAMPLE2

– AWS FULLSTACK EXAMPLE

– AWS EC2 Security Groups EXAMPLE

AWS EC2 Multiple Accounts

topology_name: "ex_aws_topo"
site: "qeos"
resource_groups:

-
resource_group_name: "testgroup1"
res_group_type: "aws"
res_defs:

-

1.5. Example Topologies 15

LinchPin Documentation, Release 1.0.3

res_name: "ha_inst"
flavor: "t1.micro"
res_type: "aws_ec2"
region: "us-west-2"
image: "ami-014cb561"
count: 1
keypair: "libra"

assoc_creds: "master_aws_creds"
-
resource_group_name: "testgroup2"
res_group_type: "aws"
res_defs:

-
res_name: "ha_inst2"
flavor: "t1.micro"
res_type: "aws_ec2"
region: "us-east-1"
image: "ami-00a7636d"
count: 2
keypair: "libra"

assoc_creds: "master_aws_creds"
-
resource_group_name: "testgroup3"
res_group_type: "aws"
res_defs:

-
res_name: "ha_inst2"
flavor: "t1.micro"
res_type: "aws_ec2"
region: "us-east-1"
image: "ami-00a7636d"
count: 1
keypair: "libra"

assoc_creds: "sk_aws_creds"
resource_group_vars:

-
resource_group_name : "testgroup1"
Name: "TestInstanceGroup1"
test_var1: "test_var1 msg is grp1 hello"
test_var2: "test_var2 msg is grp1 hello"
test_var3: "test_var3 msg is grp1 hello"

-
resource_group_name : "testgroup2"
Name: "TestInstanceGroup2"
test_var1: "test_var1 msg is grp2 hello"
test_var2: "test_var2 msg is grp2 hello"
test_var3: "test_var3 msg is grp2 hello"

-
resource_group_name : "testgroup3"
Name: "TestInstanceGroup3"
test_var1: "test_var1 msg is grp3 hello"
test_var2: "test_var2 msg is grp3 hello"
test_var3: "test_var3 msg is grp3 hello"

-
resource_group_name : "testgroup4"
Name: "TestInstanceGroup4"
test_var1: "test_var1 msg is grp4 hello"
test_var2: "test_var2 msg is grp4 hello"

16 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

test_var3: "test_var3 msg is grp4 hello"

AWS EC2 Keypair

topology_name: "ex_aws_keypair_topo"
site: "qeos"
resource_groups:

-
resource_group_name: "testgroup1"
res_group_type: "aws"
res_defs:

- res_name: "ex_keypair_sk"
res_type: "aws_ec2_key"
region: "us-west-2"

assoc_creds: "sk_aws_personal"
resource_group_vars:

-
resource_group_name : "testgroup1"
Name: "TestInstanceGroup1"
test_var1: "test_var1 msg is grp1 hello"
test_var2: "test_var2 msg is grp1 hello"
test_var3: "test_var3 msg is grp1 hello"

AWS CFN EXAMPLE1

topology_name: "ex_cfn_topo"
site: "qeos"
resource_groups:

-
resource_group_name: "testgroup1"
res_group_type: "aws"
res_defs:

-
res_name: "cfnsimplestackaws"
res_type: "aws_cfn"
region: "us-east-1"
template_path: "/path/to/cfn_template"

assoc_creds: "sk_aws_personal"
resource_group_vars:

-
resource_group_name : "testgroup1"
Name: "TestInstanceGroup1"
cfn_params:

KeyName: "sk_key"
InstanceType: "t2.micro"

AWS CFN EXAMPLE2

topology_name: "ex_cfn_topo2"

1.5. Example Topologies 17

LinchPin Documentation, Release 1.0.3

site: "qeos"
resource_groups:

-
resource_group_name: "testgroup1"
res_group_type: "aws"
res_defs:

-
res_name: "cfnsimplestackaws"
res_type: "aws_cfn"
region: "us-east-1"
template_path: "/path/to/ec2_sample_cfn.template"

assoc_creds: "sk_aws_personal"
-
resource_group_name: "testgroup2"
res_group_type: "aws"
res_defs:

-
res_name: "ha_inst2"
flavor: "t2.micro"
res_type: "aws_ec2"
region: "us-east-1"
image: "ami-fce3c696"
count: 2
keypair: "sk_key"

assoc_creds: "sk_aws_personal"
resource_group_vars:

-
resource_group_name : "testgroup1"
Name: "TestInstanceGroup1"
cfn_params:

KeyName: "sk_key"
InstanceType: "t2.micro"

-
resource_group_name : "testgroup2"
Name: "TestInstanceGroup2"
test_var1: "test_var1 msg is grp2 hello"
test_var2: "test_var2 msg is grp2 hello"
test_var3: "test_var3 msg is grp2 hello"

AWS FULLSTACK EXAMPLE

topology_name: "ex_aws_full_stack"
site: "testsite"
resource_groups:

-
resource_group_name: "testgroup1"
res_group_type: "aws"
res_defs:

-
res_name: "ha_inst2"
flavor: "t2.micro"
res_type: "aws_ec2"
region: "us-east-1"
image: "ami-fce3c696"
count: 1

18 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

keypair: "sk_key"
-

res_name: "samvaranbucktest"
res_type: "aws_s3"
region: "us-west-2"

-
res_name: "ex_keypair_sk"
res_type: "aws_ec2_key"
region: "us-west-2"

assoc_creds: "sk_aws_personal"
-
resource_group_name: "testgroup2"
res_group_type: "aws"
res_defs:

-
res_name: "cfnsimplestackaws"
res_type: "aws_cfn"
region: "us-east-1"
template_path: "/path/to/ec2_sample_cfn.template"

assoc_creds: "sk_aws_personal"
resource_group_vars:

-
resource_group_name : "testgroup1"
Name: "TestInstanceGroup1"
test_var1: "test_var1 msg is grp1 hello"
test_var2: "test_var2 msg is grp1 hello"
test_var3: "test_var3 msg is grp1 hello"

-
resource_group_name : "testgroup2"
Name: "TestInstanceGroup1"
cfn_params:

KeyName: "sk_key"
InstanceType: "t2.micro"

Note: Source of the above mentioned examples is available here

AWS EC2 Security Groups EXAMPLE

topology_name: "aws_sg_topology"
resource_groups:

-
resource_group_name: "awssgtest"
res_group_type: "aws"
res_defs:

-
res_name: "aws_test_sg"
res_type: "aws_sg"
description: "AWS Security Group with ssh access"
region: "us-east-1"
rules:

-
rule_type: "inbound"
from_port: 8 # type 8 is ICMP echo request

1.5. Example Topologies 19

https://github.com/CentOS-PaaS-SIG/linch-pin/tree/develop/linchpin/examples/topologies

LinchPin Documentation, Release 1.0.3

to_port: -1
proto: "icmp"
cidr_ip: "0.0.0.0/0"

-
rule_type: "inbound"
from_port: 22
to_port: 22
proto: "tcp"
cidr_ip: "0.0.0.0/0"

-
rule_type: "outbound"
from_port: "all"
to_port: "all"
proto: "all"
cidr_ip: "0.0.0.0/0"

assoc_creds: "aws_creds"
resource_group_vars:

-
resource_group_name : "awssgtest"
test_var1: "test_var1 msg is grp1 hello"

Note: Source of the above AWS EC2 Security Groups example can be found at Example Topologies

Openstack Topologies

Topics

• Openstack Topologies

– Openstack Server

– Openstack Keypair

– Openstack Cinder Volume

– Openstack Swift Container

– Openstack Container & Volume

– Openstack Full Stack

• Steps to provision Single Host

– Credentials

– Topology

– Provision

Openstack Server

topology_name: "example_topo"
site: "qeos"

20 Chapter 1. About LinchPin

https://github.com/CentOS-PaaS-SIG/linch-pin/tree/master/ex_topo

LinchPin Documentation, Release 1.0.3

resource_groups:
-

resource_group_name: "testgroup1"
res_group_type: "openstack"
res_defs:

-
res_name: "ha_inst"
flavor: "m1.small"
res_type: "os_server"
image: "rhel-6.5_jeos"
count: 1
keypair: "ci-factory"
networks:

- "e2e-openstack"
-
res_name: "web_inst"
flavor: "m1.small"
res_type: "os_server"
image: "rhel-6.5_jeos"
count: 1
keypair: "ci-factory"
networks:
- "e2e-openstack"

assoc_creds: "cios_e2e-openstack"
-

resource_group_name: "testgroup2"
res_group_type: "openstack"
res_defs:

- res_name: "ano_inst"
flavor: "m1.small"
res_type: "os_server"
image: "rhel-6.5_jeos"
count: 1
keypair: "ci-factory"
networks:
- "e2e-openstack"

assoc_creds: "cios_e2e-openstack"
resource_group_vars:
-

resource_group_name : "testgroup1"
test_var1: "test_var1 msg is grp1 hello "
test_var2: "test_var2 msg is grp1 hello "
test_var3: "test_var3 msg is grp1 hello "

-
resource_group_name : "testgroup2"
test_var1: "test_var1 msg is grp2 hello"
test_var2: "test_var2 msg is grp2 hello"
test_var3: "test_var3 msg is grp2 hello"

-
resource_group_name : "testgroup3"
test_var1: "test_var1 msg is grp3 hello"
test_var2: "test_var2 msg is grp3 hello"
test_var3: "test_var3 msg is grp3 hello"

1.5. Example Topologies 21

LinchPin Documentation, Release 1.0.3

Openstack Keypair

topology_name: "ex_os_keypair"
site: "qeos"
resource_groups:
-

resource_group_name: "testgroup1"
res_group_type: "openstack"
res_defs:

- res_name: "ex_keypair_sk"
res_type: "os_keypair"

assoc_creds: "cios_e2e-openstack"
resource_group_vars:
-

resource_group_name : "testgroup1"
Name: "TestInstanceGroup1"
test_var1: "test_var1 msg is grp1 hello"
test_var2: "test_var2 msg is grp1 hello"
test_var3: "test_var3 msg is grp1 hello"

Openstack Cinder Volume

topology_name: "ex_os_vol"
site: "qeos"
resource_groups:
-

resource_group_name: "testgroup1"
res_group_type: "openstack"
res_defs:

- res_name: "test_volume_sk"
res_type: "os_volume"
size: 1
count: 3

assoc_creds: "cios_e2e-openstack"
resource_group_vars:
-

resource_group_name : "testgroup1"
Name: "TestInstanceGroup1"
test_var1: "test_var1 msg is grp1 hello"
test_var2: "test_var2 msg is grp1 hello"
test_var3: "test_var3 msg is grp1 hello"

Openstack Swift Container

topology_name: "ex_os_obj"
site: "qeos"
resource_groups:
-

resource_group_name: "testgroup1"
res_group_type: "openstack"
res_defs:

22 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

- res_name: "testcontainer_sk"
res_type: "os_object"
access: "public"
count: 2

assoc_creds: "cios_e2e-openstack"
-

resource_group_name: "testgroup2"
res_group_type: "openstack"
res_defs:

- res_name: "testit_sk"
res_type: "os_object"
access: "private"
count: 2

assoc_creds: "cios_e2e-openstack"
resource_group_vars:
-

resource_group_name : "testgroup1"
Name: "TestInstanceGroup1"
test_var1: "test_var1 msg is grp1 hello"
test_var2: "test_var2 msg is grp1 hello"
test_var3: "test_var3 msg is grp1 hello"

-
resource_group_name : "testgroup2"
Name: "TestInstanceGroup2"
test_var1: "test_var1 msg is grp2 hello"
test_var2: "test_var2 msg is grp2 hello"
test_var3: "test_var3 msg is grp2 hello"

Openstack Container & Volume

topology_name: "ex_os_obj_vol"
site: "qeos"
resource_groups:
-

resource_group_name: "testgroup1"
res_group_type: "openstack"
res_defs:

- res_name: "test_volume_sk"
res_type: "os_volume"
size: 2
count: 3

- res_name: "testcontainer_sk"
res_type: "os_object"
access: "public"
count: 3

assoc_creds: "cios_e2e-openstack"
resource_group_vars:
-

resource_group_name : "testgroup1"
Name: "TestInstanceGroup1"
test_var1: "test_var1 msg is grp1 hello"
test_var2: "test_var2 msg is grp1 hello"
test_var3: "test_var3 msg is grp1 hello"

1.5. Example Topologies 23

LinchPin Documentation, Release 1.0.3

Openstack Full Stack

topology_name: "ex_os_heat_topo"
site: "qeos"
resource_groups:
-

resource_group_name: "testgroup1"
res_group_type: "openstack"
res_defs:

-
res_name: "ex_keypair_sk"
res_type: "os_keypair"

-
res_name: "os_heat_template_sample"
res_type: "os_heat"
template_path: "/path/to/hot_template_sample2.yaml"

- res_name: "ano_inst"
flavor: "m1.small"
res_type: "os_server"
image: "rhel-6.5_jeos"
count: 2
keypair: "ci-factory"
networks:

- "e2e-openstack"
assoc_creds: "cios_e2e-openstack"

-
resource_group_name: "testgroup2"
res_group_type: "openstack"
res_defs:

- res_name: "test_volume_sk"
res_type: "os_volume"
size: 2
count: 3

- res_name: "testcontainer_sk"
res_type: "os_object"
access: "public"
count: 3

assoc_creds: "cios_e2e-openstack"
resource_group_vars:
-

resource_group_name : "testgroup1"
Name: "TestInstanceGroup1"
heat_params:

key_name: "ci-factory"
image_id: "rhel-6.5_jeos"
instance_type: "m1.small"
network_name: "e2e-openstack"

-
resource_group_name : "testgroup2"
Name: "TestInstanceGroup2"
test_var1: "test_var1 msg is grp2 hello"
test_var2: "test_var2 msg is grp2 hello"
test_var3: "test_var3 msg is grp2 hello"

24 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

Steps to provision Single Host

Topics

• Openstack Topologies

– Openstack Server

– Openstack Keypair

– Openstack Cinder Volume

– Openstack Swift Container

– Openstack Container & Volume

– Openstack Full Stack

• Steps to provision Single Host

– Credentials

– Topology

– Provision

Credentials

• save openstack credentials in standard clouds.yml file using below format and save the directory path con-
taining clouds.yml in environment variable CREDS_PATH.

clouds:
devstack:

auth:
username: "admin"
password: "Secret123"
project_name: "my-tenant"
auth_url: "http://192.168.122.33:5000/v2.0"

Topology

• create topology file under $WORKSPACE/topologies/openstack_topology.yml as show below:

topology_name: "osp-test"
resource_groups:
-

resource_group_name: "lp-test"
resource_group_type: "openstack"
resource_definitions:

- name: "test1"
type: "os_server"
flavor: "m1.small"
image: "rhel-6.5_jeos"
count: 1
keypair: "ci-factory"

1.5. Example Topologies 25

LinchPin Documentation, Release 1.0.3

networks:
- "e2e-openstack"

fip_pool: "192.168.122.1/24"
credentials:

filename: "clouds.yml"
profile: "devstack"

Provision

• provision the above topology

$ cd $WORKSPACE
$ export CREDS_PATH="/path/to/credential_dir/"
$ linchpin -v up

• Alternatively one could pass credentials path as an argument to linchpin

$ cd $WORKSPACE
$ linchpin -v --creds-path /path/to/dir_containing_clouds.yml/ up

OpenShift Topologies

Topics

• OpenShift Topologies

– Inventory Generation

– Accessing OpenShift Resources

– Note About Teardown

– Example Topologies

* OpenShift Instance (Inline)

* OpenShift Instance (external)

Inventory Generation

It is important to note that OpenShift resources do not follow the normal rules of most other providers. When you
provision a resource in OpenShift, there is no easy way for Linchpin to introspect any information about the resources
you have spun up. Accessing individual containers and pods directly is a violation of how most people expect Open-
Shift and container technologies in general to operate. Therefore, no output will be given into the generated Ansible
inventory file for an OpenShift provisioning. OpenShift does not even expose a method to address an individual con-
tainer and create or destroy one. It only exposes the pod level and above for creation, making entering into a particular
container impossible.

Additionally, it is possible to use Linchpin to spin up resources in OpenShift that are not even containers, as any item
other than an Event which may be created through the API can be created through the OpenShift provider layer in
Linchpin. Thus, even if proper destination IP addresses could be introspected from the results, there is no guarantee
that what is being created even has such a destination.

26 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

Accessing OpenShift Resources

Furthermore, individual containers will typically not expose SSH access to the process space. Such introspection of
the containers needs to be done through native OpenShift methods such as the command line client “oc” and its sub
commands like “exec” and “rsh”. Information on how to access running pods and containers can be found in the
external documentation for OpenShift, along with specific information from your cluster’s administrator.

Note About Teardown

Again, OpenShift shows its special nature in the teardown step of infrastructure management. Most use cases, as is
the case with the example below, will create what is known as a “replication controller”. This is an object with the job
of monitoring and maintaining multiple copies of a pod running across the cluster. The replication controller provides
a very simple way to increase or decrease the quantity of running pods. If it detects that ond of its pods has stopped
for any reason, it will attempt to recreate the pod again. This is good, as it gives a layer of automated infrastructure
monitoring to ensure the required number of copies are running across the cluster.

However, this configuration creates a difficulty with teardown. If a topology file creates a replication controller with
more than 0 pods (the example below creates a ReplicationController with 7 copies of the Jenkins slave pod running)
that RC will work to keep the pods up, but it will not teardown those pods when the RC is deleted. Those pods will
remain running until they are either killed manually or until their base process crashes. Thus, running “linchpin rise”
followed by “linchpin drop” on this ReplicationController will leave seven orphaned pods running in the cluster unless
they are cleaned up manually.

One way to avoid this is to “scale down” the RC by setting its number of active pods to 0 before deleting it. This will
leave no orphaned pods behind. Alternatively, the pods could be deleted manually after deletion of the RC. Linchpin
does not attempt to do the scaling automatically, as there are a vast number of possible scenarios for leaving orphaned
items behind in a cluster. Pods are only referenced here as the most likely possibility, and are a clear example of
something that could be orphaned on a cluster.

Example Topologies

Each of these topologies has two places where authentication data will need to be inserted. The first is the field named
“api_endpoint”. This needs to be, minimally, the hostname and port serving the OpenShift cluster API. If the API is
behind an additional path element instead of living at the root of the host, this portion can be continued on just as if
this is part of a URL fragment.

Secondly, the “api_token” field needs to filled in. This field is time dependent for most users, so it might need to be
regenerated on a regular basis. This can be done by executing “oc whoami –token” after an “oc login” command.

OpenShift Instance (Inline)

In this example, the data for a ReplicationController is inserted directly into the topology file. The value under
“inline_data” is exactly the same as the data that would be passed into the “oc” command through a file.

topology_name: openshift
resource_groups:
- resource_group_name: test1

res_group_type: openshift
api_endpoint: example.com:8443
api_token: someapitoken
resources:

- inline_data:
apiVersion: v1

1.5. Example Topologies 27

LinchPin Documentation, Release 1.0.3

kind: ReplicationController
metadata:
name: jenkins-slave
namespace: central-ci-test-ghelling

spec:
replicas: 7
selector:
name: jenkins-slave

template:
metadata:
labels:
name: jenkins-slave

spec:
containers:
- image: redhatqecinch/jenkins_slave:latest
name: jenkins-slave
env:
- name: JENKINS_MASTER_URL
value: http://10.8.172.6/

- name: JSLAVE_NAME
value: mynode

restartPolicy: Always
securityPolicy:
runAsUser: 1000090000

OpenShift Instance (external)

In this example, the data is not placed into the topology file but a reference to an external yaml file is provided. That
file will be read in by Linchpin and uploaded to the OpenShift cluster just as if it had been passed into the “oc” client.

topology_name: openshift_external
resource_groups:
- resource_group_name: test-external

res_group_type: openshift
api_endpoint: example.com:8443
api_token: someapitoken
resources:

- file_reference: /home/user/openshift/external/resource/file.yaml
- file_reference: /home/user/openshift/external/resource/cluster.yaml

Gcloud Topologies

Topics

• Gcloud Topologies

– Google Cloud Topologies

28 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

Google Cloud Topologies

topology_name: "ex_gcloud_topo1"
resource_groups:
-

resource_group_name: "testgroup1"
res_group_type: "gcloud"
res_defs:

-
res_name: "testresource"
flavor: "n1-standard-1"
res_type: "gcloud_gce"
region: "us-central1-a"
image: "centos-7"
count: 1

assoc_creds: "gcloudsk"
-

resource_group_name: "testgroup2"
res_group_type: "gcloud"
res_defs:

-
res_name: "testresource2"
flavor: "n1-standard-1"
res_type: "gcloud_gce"
region: "us-central1-a"
image: "centos-7"
count: 2

assoc_creds: "gcloudsk"
resource_group_vars:
-

resource_group_name : "testgroup1"
Name: "TestInstanceGroup1"
test_var1: "test_var1 msg is grp1 hello"
test_var2: "test_var2 msg is grp1 hello"
test_var3: "test_var3 msg is grp1 hello"

-
resource_group_name : "testgroup2"
Name: "TestInstanceGroup2"
test_var1: "test_var1 msg is grp2 hello"
test_var2: "test_var2 msg is grp2 hello"
test_var3: "test_var3 msg is grp3 hello"

Note: Source of the above mentioned examples can be found at Example Topologies

Duffy Topologies

Topics

• Duffy Topologies

– Simple Duffy Cluster

1.5. Example Topologies 29

https://github.com/CentOS-PaaS-SIG/linch-pin/tree/master/ex_topo

LinchPin Documentation, Release 1.0.3

Simple Duffy Cluster

topology_name: "duffy_3node_cluster"
resource_groups:

-
resource_group_name: "3node"
res_group_type: "duffy"
res_defs:

-
res_name: "duffy_nodes"
res_type: "duffy"
version: 7
arch: "x86_64"
count: 3

assoc_creds: "duffy_creds"

Note: the reference to duffy_creds defaults to using an assumed file in the user’s home directory called duffy.
key, and points to an internal service at http://admin.ci.centos.org:8080. The credentials themselves are held in the
duffy.key file.

Beaker Topologies

Topics

• Beaker Topologies

– Beaker Server

– Requiring Specific Hosts

* Force a Specific Host

* Select from a named System Pool

Beaker Server

topology_name: beaker
resource_groups:

- resource_group_name: test1
res_group_type: beaker
job_group: your-beaker-group
whiteboard: Arbitrary Job whiteboard string
recipesets:

- distro: RHEL-6.5
arch: x86_64
keyvalue:
- MEMORY>1000
- DISKSPACE>20000

hostrequires:
- tag: processors

30 Chapter 1. About LinchPin

http://admin.ci.centos.org:8080

LinchPin Documentation, Release 1.0.3

op: ">="
value: 4

- tag: device
op: "="
type: "network"

count: 1

Note: Source of the above Beaker example can be found at Example Topologies

Requiring Specific Hosts

By default, any host available to your beaker user can be selected for use in a given job. If a specific host, or hosts, is
desired, hostrequires filters can be used to refine the hosts selected for use in a given job.

Force a Specific Host

The reservation of a specific hostname can be done with the force keyword nested within a recipeset’s
hostrequires mapping. Additional filtering, such as a keyvalue or hostrequires filter, is silently ignored
by beaker when the hostname to reserve is forced. Because of this, using the force argument is mutually exclusive
to using any other filters.

For example:

hostrequires:
force: beaker.machine.hostname

Select from a named System Pool

Beaker also supports provisioning from a named system pool:

hostrequires:
- tag: pool
op: "="
value: system-pool-name

This filter will automatically select a system from the named system pool, but unlike the force keyword additional
filters will also be applied.

Note: The “op” keyword of a hostrequires filter should be quoted when the operator contains symbols, such as “==”,
”!=”, or “>=”.

Libvirt Topologies

Topics

• Libvirt Topologies

1.5. Example Topologies 31

https://github.com/CentOS-PaaS-SIG/linch-pin/tree/master/examples/topology

LinchPin Documentation, Release 1.0.3

– Simple Libvirt Topology

– Complete Libvirt Topology

Simple Libvirt Topology

topology_name: "libvirt_simple"
resource_groups:
-

resource_group_name: "simple"
res_group_type: "libvirt"
res_defs:

- res_name: "centos72"
res_type: "libvirt_node"
driver: 'qemu'
uri: 'qemu:///system'
image_src: 'file:///tmp/linchpin_centos71.img'
count: 2
memory: 2048
vcpus: 2
networks:

- name: linchpin-centos72

- res_name: "centos71"
res_type: "libvirt_node"
uri: 'qemu:///system'
count: 1
image_src: 'http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-

→˓GenericCloud-1608.qcow2.xz'
memory: 2048
vcpus: 2
arch: x86_64
networks:
- name: linchpin-centos71

Note: Each set of nodes can only be assigned one network at this time.

Note: The above topology assumes both networks exist and are running at provision time. If they are not, or do not
exist, they will not be created and will fail.

Complete Libvirt Topology

topology_name: "libvirt_test"
resource_groups:

-
resource_group_name: "libvirt1"
res_group_type: "libvirt"
res_defs:

32 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

- res_name: "linchpin-centos72"
res_type: "libvirt_network"
ip: 192.168.77.100
dhcp_start: 192.168.77.101
dhcp_end: 192.168.77.112

- res_name: "linchpin-centos74"
res_type: "libvirt_network"

- res_name: "centos72"
res_type: "libvirt_node"
uri: 'qemu:///system'
count: 2
memory: 2048
vcpus: 2
networks:
- name: linchpin-centos72

- res_name: "centos74"
res_type: "libvirt_node"
uri: 'qemu://libvirt.example.com/system'
memory: 1024
vcpus: 1
networks:
- name: linchpin-centos74

Note: as compared with the simple topology above, this topology defines and enables the network(s) with the
res_type of libvirt_network.

Note: The linchpin-centos72 network will support dhcp, with a defined pool.

Note: The linchpin-centos74 is providing only the network definition. Each defined node would need to
manually configure its own ip address.

Note: Libvirt provisioning does not yet support assoc_creds as simple adjustments can be made to a hypervisor
to accommodate authentication.

Hybrid Topologies

Topics

• Hybrid Topologies

– Hybrid Topology1 (os_heat_aws_s3_gce)

1.5. Example Topologies 33

LinchPin Documentation, Release 1.0.3

Hybrid Topology1 (os_heat_aws_s3_gce)

topology_name: "ex_os_heat_aws_s3_gce_topo"
site: "testsite"
resource_groups:
-

resource_group_name: "testgroup1"
res_group_type: "aws"
res_defs:

-
res_name: "ha_inst2"
flavor: "t2.micro"
res_type: "aws_ec2"
region: "us-east-1"
image: "ami-fce3c696"
count: 1
keypair: "sk_key"

-
res_name: "samvaranbucktest"
res_type: "aws_s3"
region: "us-west-2"

assoc_creds: "sk_aws_personal"
-

resource_group_name: "testgroup2"
res_group_type: "openstack"
res_defs:

- res_name: "ano_inst"
flavor: "m1.small"
res_type: "os_server"
image: "rhel-6.5_jeos"
count: 1
keypair: "ci-factory"
networks:
- "e2e-openstack"

assoc_creds: "cios_e2e-openstack"
-

resource_group_name: "testgroup3"
res_group_type: "gcloud"
res_defs:

-
res_name: "testresourcesme"
flavor: "n1-standard-1"
res_type: "gcloud_gce"
region: "us-central1-a"
image: "debian-8"
count: 1

assoc_creds: "gcloudsk"
-

resource_group_name: "testgroup4"
res_group_type: "openstack"
res_defs:

-
res_name: "os_heat_template_sample"
res_type: "os_heat"
template_path: "/root/clients/heat_clients/hot_template_sample2.yaml"

assoc_creds: "cios_e2e-openstack"
resource_group_vars:

34 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

-
resource_group_name: "testgroup1"
Name: "TestInstanceGroup1"
test_var1: "test_var1 msg is grp1 hello"
test_var2: "test_var2 msg is grp1 hello"
test_var3: "test_var3 msg is grp1 hello"

-
resource_group_name: "testgroup2"
Name: "TestInstanceGroup2"
test_var1: "test_var1 msg is grp2 hello"
test_var2: "test_var2 msg is grp2 hello"
test_var3: "test_var3 msg is grp2 hello"

-
resource_group_name: "testgroup3"
Name: "TestInstanceGroup3"
test_var1: "test_var1 msg is grp3 hello"
test_var2: "test_var2 msg is grp3 hello"
test_var3: "test_var3 msg is grp3 hello"

-
resource_group_name: "testgroup4"
Name: "TestInstanceGroup4"
heat_params:

key_name: "ci-factory"
image_id: "rhel-6.5_jeos"
instance_type: "m1.small"
network_name: "e2e-openstack"

Note: Source of the above mentioned examples can be found at Example Topologies

oVirt Topologies

Topics

• oVirt Topologies

– oVirt Virtual Machines

oVirt Virtual Machines

topology_name: "oVirt_vms_example_topology"
resource_groups:

-
resource_group_name: "golden_env_mixed"
resource_group_type: "ovirt"
resource_definitions:

-
res_name: "virtio_1_0"
res_type: "ovirt_vms"
template: "golden_mixed_virtio_template"
cluster: "golden_env_mixed_1"

1.5. Example Topologies 35

https://github.com/CentOS-PaaS-SIG/linch-pin/tree/master/ex_topo

LinchPin Documentation, Release 1.0.3

-
res_name: "virtio_1_1"
res_type: "ovirt_vms"
template: "golden_mixed_virtio_template"
cluster: "golden_env_mixed_1"

credentials:
filename: "ex_ovirt_creds.yml"
profile: "ge2"

Note: Source of the above mentioned examples can be found at Example Topologies

Python API Reference

This page contains the list of project’s modules

linchpin module

The linchpin module contains calls to implement the Command Line Interface within linchpin. It uses the Click
command line interface composer.

linchpin.init()
Initializes a linchpin project, which generates an example PinFile, and creates the necessary directory structure
for topologies and layouts.

Parameters ctx – Context object defined by the click.make_pass_decorator method

linchpin.up()
Provisions nodes from the given target(s) in the given PinFile.

Parameters

• ctx – Context object defined by the click.make_pass_decorator method

• pinfile – path to pinfile (Default: ctx.workspace)

• targets – Provision ONLY the listed target(s). If omitted, ALL targets in the appropriate
PinFile will be provisioned.

linchpin.rise()
DEPRECATED. Use ‘up’

linchpin.destroy()
Destroys nodes from the given target(s) in the given PinFile.

Parameters

• ctx – Context object defined by the click.make_pass_decorator method

• pinfile – path to pinfile (Default: ctx.workspace)

• targets – Destroy ONLY the listed target(s). If omitted, ALL targets in the appropriate
PinFile will be destroyed.

linchpin.drop()
DEPRECATED. Use ‘destroy’.

36 Chapter 1. About LinchPin

https://github.com/CentOS-PaaS-SIG/linch-pin/tree/master/ex_topo
http://click.pocoo.org

LinchPin Documentation, Release 1.0.3

There are now two functions, destroy and down which perform node teardown. The destroy functionality is the
default, and if drop is used, will be called.

The down functionality is currently unimplemented, but will shutdown and preserve instances. This feature will
only work on providers that support this option.

linchpin.api module

This page contains the list of project’s modules

class linchpin.api.LinchpinAPI(ctx)

__init__(ctx)
LinchpinAPI constructor

Parameters ctx – context object from api/context.py

lp_up(pinfile, targets=’all’)
This function takes a list of targets, and provisions them according to their topology. If an layout argument
is provided, an inventory will be generated for the provisioned nodes.

Parameters

• pinfile – Provided PinFile, with available targets,

• targets – A tuple of targets to provision.

lp_destroy(pinfile, targets=’all’)
This function takes a list of targets, and performs a destructive teardown, including undefining nodes,
according to the target.

See also:

lp_down - currently unimplemented

Parameters

• pinfile – Provided PinFile, with available targets,

• targets – A tuple of targets to destroy.

lp_down(pinfile, targets=’all’)
This function takes a list of targets, and performs a shutdown on nodes in the target’s topology. Only
providers which support shutdown from their API (Ansible) will support this option.

CURRENTLY UNIMPLEMENTED

See also:

lp_destroy

Parameters

• pinfile – Provided PinFile, with available targets,

• targets – A tuple of targets to provision.

run_playbook(pinfile, targets=’all’, playbook=’up’)
This function takes a list of targets, and executes the given playbook (provison, destroy, etc.) for each
provided target.

Parameters

1.6. Python API Reference 37

LinchPin Documentation, Release 1.0.3

• pinfile – Provided PinFile, with available targets,

• targets – A tuple of targets to run. (default: ‘all’)

find_topology(topology)
Find the topology to be acted upon. This could be pulled from a registry.

Parameters topology – name of topology from PinFile to be loaded

get_cfg(section=None, key=None, default=None)
Get cfgs value(s) by section and/or key, or the whole cfgs object

Parameters

• section – section from ini-style config file

• key – key to get from config file, within section

• default – default value to return if nothing is found.

Does not apply if section is not provided.

set_cfg(section, key, value)
Set a value in cfgs. Does not persist into a file, only during the current execution.

Parameters

• section – section within ini-style config file

• key – key to use

• value – value to set into section within config file

get_evar(key=None, default=None)
Get the current evars (extra_vars)

Parameters

• key – key to use

• default – default value to return if nothing is found

(default: None)

set_evar(key, value)
Set a value into evars (extra_vars). Does not persist into a file, only during the current execution.

Parameters

• key – key to use

• value – value to set into evars

lp_rise(pinfile, targets=’all’)
DEPRECATED

An alias for lp_up. Used only for backward compatibility.

lp_drop(pinfile, targets)
DEPRECATED

An alias for lp_destroy. Used only for backward compatibility.

class linchpin.api.context.LinchpinContext
LinchpinContext object, which will be used to manage the cli, and load the configuration file.

get_cfg(section=None, key=None, default=None)
Get cfgs value(s) by section and/or key, or the whole cfgs object

38 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

Parameters

• section – section from ini-style config file

• key – key to get from config file, within section

• default – default value to return if nothing is found.

Does not apply if section is not provided.

get_evar(key=None, default=None)
Get the current evars (extra_vars)

Parameters

• key – key to use

• default – default value to return if nothing is found

(default: None)

load_config(lpconfig=None)
Create self.cfgs from the linchpin configuration file.

Note: Overrides load_config in linchpin.api.LinchpinContext

These are the only hardcoded values, which are used to find the config file. The search path consists of the
following:

* /linchpin/library/path/linchpin.conf

* /etc/linchpin.conf

* ~/.config/linchpin/linchpin.conf

* path/to/workspace/linchpin.conf

Linchpin will continuously override and extend the configuration as newer configurations are added and
modified. Alternatively, a full path to the linchpin configuration file can be passed.

Parameters lpconfig – absolute path to a linchpin config (default: None)

load_global_evars()
Instantiate the evars variable, then load the variables from the ‘evars’ section in linchpin.conf. This will
then be passed to invoke_linchpin, which passes them to the Ansible playbook as needed.

log(msg, **kwargs)
Logs a message to a logfile

Parameters

• msg – message to output to log

• level – keyword argument defining the log level

log_debug(msg)
Logs a DEBUG message

log_info(msg)
Logs an INFO message

log_state(msg)
Logs nothing, just calls pass

1.6. Python API Reference 39

LinchPin Documentation, Release 1.0.3

Attention: state messages need to be implemented in a subclass

pinfile
getter function for pinfile name

set_cfg(section, key, value)
Set a value in cfgs. Does not persist into a file, only during the current execution.

Parameters

• section – section within ini-style config file

• key – key to use

• value – value to set into section within config file

set_evar(key, value)
Set a value into evars (extra_vars). Does not persist into a file, only during the current execution.

Parameters

• key – key to use

• value – value to set into evars

setup_logging()
Setup logging to the console only

Attention: Please implement this function in a subclass

workspace
getter function for workspace

linchpin.api.utils.yaml2json(pf)
parses yaml file into json object

linchpin.cli module

This page contains the list of project’s modules

class linchpin.cli.LinchpinCli(ctx)

__init__(ctx)
Set some variables, pass to parent class

lp_up(pinfile, targets=’all’)
This function takes a list of targets, and provisions them according to their topology. If an layout argument
is provided, an inventory will be generated for the provisioned nodes.

Parameters

• pinfile – Provided PinFile, with available targets,

• targets – A tuple of targets to provision.

lp_destroy(pinfile, targets=’all’)
This function takes a list of targets, and performs a destructive teardown, including undefining nodes,
according to the target.

40 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

See also:

lp_down - currently unimplemented

Parameters

• pinfile – Provided PinFile, with available targets,

• targets – A tuple of targets to destroy.

lp_down(pinfile, targets=’all’)
This function takes a list of targets, and performs a shutdown on nodes in the target’s topology. Only
providers which support shutdown from their API (Ansible) will support this option.

CURRENTLY UNIMPLEMENTED

See also:

lp_destroy

Parameters

• pinfile – Provided PinFile, with available targets,

• targets – A tuple of targets to provision.

run_playbook(pinfile, targets=’all’, playbook=’up’)
This function takes a list of targets, and executes the given playbook (provison, destroy, etc.) for each
provided target.

Parameters

• pinfile – Provided PinFile, with available targets,

• targets – A tuple of targets to run. (default: ‘all’)

find_topology(topology)
Find the topology to be acted upon. This could be pulled from a registry.

Parameters topology – name of topology from PinFile to be loaded

get_cfg(section=None, key=None, default=None)
Get cfgs value(s) by section and/or key, or the whole cfgs object

Parameters

• section – section from ini-style config file

• key – key to get from config file, within section

• default – default value to return if nothing is found.

Does not apply if section is not provided.

set_cfg(section, key, value)
Set a value in cfgs. Does not persist into a file, only during the current execution.

Parameters

• section – section within ini-style config file

• key – key to use

• value – value to set into section within config file

1.6. Python API Reference 41

LinchPin Documentation, Release 1.0.3

get_evar(key=None, default=None)
Get the current evars (extra_vars)

Parameters

• key – key to use

• default – default value to return if nothing is found

(default: None)

set_evar(key, value)
Set a value into evars (extra_vars). Does not persist into a file, only during the current execution.

Parameters

• key – key to use

• value – value to set into evars

lp_rise(pinfile, targets=’all’)
DEPRECATED

An alias for lp_up. Used only for backward compatibility.

lp_drop(pinfile, targets)
DEPRECATED

An alias for lp_destroy. Used only for backward compatibility.

class linchpin.cli.context.LinchpinCliContext
Context object, which will be used to manage the cli, and load the configuration file

get_cfg(section=None, key=None, default=None)
Get cfgs value(s) by section and/or key, or the whole cfgs object

Parameters

• section – section from ini-style config file

• key – key to get from config file, within section

• default – default value to return if nothing is found.

Does not apply if section is not provided.

get_evar(key=None, default=None)
Get the current evars (extra_vars)

Parameters

• key – key to use

• default – default value to return if nothing is found

(default: None)

load_config(lpconfig=None)

load_global_evars()
Instantiate the evars variable, then load the variables from the ‘evars’ section in linchpin.conf. This will
then be passed to invoke_linchpin, which passes them to the Ansible playbook as needed.

log(msg, **kwargs)
Logs a message to a logfile or the console

Parameters

42 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

• msg – message to log

• lvl – keyword argument defining the log level

• msg_type – keyword argument giving more flexibility.

Note: Only msg_type STATE is currently implemented.

log_debug(msg)
Logs a DEBUG message

log_info(msg)
Logs an INFO message

log_state(msg)
Logs a message to stdout

pinfile
getter function for pinfile name

set_cfg(section, key, value)
Set a value in cfgs. Does not persist into a file, only during the current execution.

Parameters

• section – section within ini-style config file

• key – key to use

• value – value to set into section within config file

set_evar(key, value)
Set a value into evars (extra_vars). Does not persist into a file, only during the current execution.

Parameters

• key – key to use

• value – value to set into evars

setup_logging()
Setup logging to a file, console, or both. Modifying the linchpin.conf appropriately will provide function-
ality.

workspace
getter function for workspace

Glossary

The following is a list of terms used throughout the LinchPin documentation.

async (boolean, default: False)

Used to enable asynchronous provisioning/teardown

async_timeout (int, default: 1000)

How long the resouce collection (formerly outputs_writer) process should wait

1.7. Glossary 43

LinchPin Documentation, Release 1.0.3

check_mode (boolean, default: no)

This option does nothing at this time, though it may eventually be used for dry-run functionality based upon the
provider

default_schemas_path (file_path, default: <lp_path>/defaults/<schemas_folder>)

default path to schemas, absolute path. Can be overridden by passing schema / schema_file.

default_playbooks_path (file_path, default: <lp_path>/defaults/playbooks_folder>)

default path to playbooks location, only useful to the linchpin API and CLI

default_layouts_path (file_path, default: <lp_path>/defaults/<layouts_folder>)

default path to inventory layout files

default_topologies_path (file_path, default: <lp_path>/defaults/<topologies_folder>)

default path to topology files

default_resources_path (file_path, default: <lp_path>/defaults/<resources_folder>, formerly: outputs)

default landing location for resources output data

default_inventories_path (file_path, default: <lp_path>/defaults/<inventories_folder>)

default landing location for inventory outputs

hook Certan scripts can be called when a particular hook has been referenced in the PinFile. The currently available
hooks are preup, postup, predestroy, and postdestroy.

inventory

inventory_file If layout / layout_file is provided, this will be the location of the resulting ansible inventory.

linchpin_config if passed on the command line with -c/--config, should be an ini-style config file with linchpin
default configurations (see BUILT-INS below for more information)

layout

layout_file YAML definition for providing an ansible (currently) static inventory file, based upon the provided topol-
ogy.

layouts_folder (file_path, default: layouts)

relative path to layouts

lp_path base path for linchpin playbooks and python api

lpconfig <lp_path>/linchpin.conf, unless overridden by linchpin_config

output (boolean, default: True, previous: no_output)

Controls whether resources will be written to the resources_file

PinFile A YAML file consisting of a topology and an optional layout, among other options. This file is used by the
linchpin command-line, or Python API to determine what resources are needed for the current action.

playbooks_folder (file_path, default: provision)

relative path to playbooks, only useful to the linchpin API and CLI

provider A set of platform actions grouped together, which is provided by an external Ansible module. openstack
would be a provider.

provision An action taken when resources are to be made available on a particular provider platform. Usually
corresponds with the linchpin up command.

44 Chapter 1. About LinchPin

LinchPin Documentation, Release 1.0.3

resources

resources_file File with the resource outputs in a JSON formatted file. Useful for teardown (destroy,down) actions
depending on the provider.

schema JSON description of the format for the topology.

(schema_v3, schema_v4 are still available)

schemas_folder (file_path, default: schemas)

relative path to schemas

target Specified in the PinFile, the target references a topology and optional layout to be acted upon from the
command-line utility, or Python API.

teardown An action taken when resources are to be made unavailable on a particular provider platform. Usually
corresponds with the linchpin destroy command.

topologies_folder (file_path, default: topologies)

relative path to topologies

topology

topology_file A set of rules, written in YAML, that define the way the provisioned systems should look after executing
linchpin.

Generally, the topology and topology_file values are interchangeable, except after the file has been processed.

topology_name Within a topology_file, the topology_name provides a way to identify the set of resources being
acted upon.

workspace If provided, the above variables will be adjusted and mapped according to this value. Each path will use
the following variables:

topology / topology_file = /<topologies_folder>
layout / layout_file = /<layouts_folder>
resources / resources_file = /resources_folder>
inventory / inventory_file = /<inventories_folder>

If the WORKSPACE environment variable is set, it will be used here. If it is not, this variable can be set on the
command line with -w/--workspace, and defaults to the location of the PinFile bring provisioned.

Note: schema is not affected by this pathing

See also:

Ansible Variables Ansible Variables

Source Code LinchPin Source Code

User Mailing List Subscribe and participate. A great place for Q&A

irc.freenode.net #linchpin IRC chat channel

1.7. Glossary 45

https://github.com/CentOS-PaaS-SIG/linchpin
https://www.redhat.com/mailman/listinfo/linchpin
http://irc.freenode.net

LinchPin Documentation, Release 1.0.3

46 Chapter 1. About LinchPin

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

47

LinchPin Documentation, Release 1.0.3

48 Chapter 2. Indices and tables

Python Module Index

l
linchpin, 36
linchpin.api, 37
linchpin.api.context, 38
linchpin.api.utils, 40
linchpin.cli, 40
linchpin.cli.context, 42
linchpin.version, 37

49

LinchPin Documentation, Release 1.0.3

50 Python Module Index

Index

Symbols
__init__() (linchpin.api.LinchpinAPI method), 37
__init__() (linchpin.cli.LinchpinCli method), 40

A
async, 14, 43
async_timeout, 14, 43

C
check_mode, 14, 44

D
default_inventories_path, 15, 44
default_layouts_path, 15, 44
default_playbooks_path, 15, 44
default_resources_path, 15, 44
default_schemas_path, 14, 44
default_topologies_path, 15, 44
destroy() (in module linchpin), 36
drop() (in module linchpin), 36

F
find_topology() (linchpin.api.LinchpinAPI method), 38
find_topology() (linchpin.cli.LinchpinCli method), 41

G
get_cfg() (linchpin.api.context.LinchpinContext method),

38
get_cfg() (linchpin.api.LinchpinAPI method), 38
get_cfg() (linchpin.cli.context.LinchpinCliContext

method), 42
get_cfg() (linchpin.cli.LinchpinCli method), 41
get_evar() (linchpin.api.context.LinchpinContext

method), 39
get_evar() (linchpin.api.LinchpinAPI method), 38
get_evar() (linchpin.cli.context.LinchpinCliContext

method), 42
get_evar() (linchpin.cli.LinchpinCli method), 41

H
hook, 44

I
init() (in module linchpin), 36
inventory, 13, 44
inventory_file, 13, 44

L
layout, 13, 44
layout_file, 13, 44
layouts_folder, 14, 44
linchpin (module), 36
linchpin.api (module), 37
linchpin.api.context (module), 38
linchpin.api.utils (module), 40
linchpin.cli (module), 40
linchpin.cli.context (module), 42
linchpin.version (module), 37
linchpin_config, 13, 44
LinchpinAPI (class in linchpin.api), 37
LinchpinCli (class in linchpin.cli), 40
LinchpinCliContext (class in linchpin.cli.context), 42
LinchpinContext (class in linchpin.api.context), 38
load_config() (linchpin.api.context.LinchpinContext

method), 39
load_config() (linchpin.cli.context.LinchpinCliContext

method), 42
load_global_evars() (linch-

pin.api.context.LinchpinContext method),
39

load_global_evars() (linch-
pin.cli.context.LinchpinCliContext method),
42

log() (linchpin.api.context.LinchpinContext method), 39
log() (linchpin.cli.context.LinchpinCliContext method),

42
log_debug() (linchpin.api.context.LinchpinContext

method), 39

51

LinchPin Documentation, Release 1.0.3

log_debug() (linchpin.cli.context.LinchpinCliContext
method), 43

log_info() (linchpin.api.context.LinchpinContext
method), 39

log_info() (linchpin.cli.context.LinchpinCliContext
method), 43

log_state() (linchpin.api.context.LinchpinContext
method), 39

log_state() (linchpin.cli.context.LinchpinCliContext
method), 43

lp_destroy() (linchpin.api.LinchpinAPI method), 37
lp_destroy() (linchpin.cli.LinchpinCli method), 40
lp_down() (linchpin.api.LinchpinAPI method), 37
lp_down() (linchpin.cli.LinchpinCli method), 41
lp_drop() (linchpin.api.LinchpinAPI method), 38
lp_drop() (linchpin.cli.LinchpinCli method), 42
lp_path, 14, 44
lp_rise() (linchpin.api.LinchpinAPI method), 38
lp_rise() (linchpin.cli.LinchpinCli method), 42
lp_up() (linchpin.api.LinchpinAPI method), 37
lp_up() (linchpin.cli.LinchpinCli method), 40
lpconfig, 14, 44

O
output, 14, 44

P
PinFile, 44
pinfile (linchpin.api.context.LinchpinContext attribute),

40
pinfile (linchpin.cli.context.LinchpinCliContext at-

tribute), 43
playbooks_folder, 14, 44
provider, 44
provision, 44

R
resources, 13, 45
resources_file, 13, 45
rise() (in module linchpin), 36
run_playbook() (linchpin.api.LinchpinAPI method), 37
run_playbook() (linchpin.cli.LinchpinCli method), 41

S
schema, 13, 45
schema_file, 13
schemas_folder, 14, 45
set_cfg() (linchpin.api.context.LinchpinContext method),

40
set_cfg() (linchpin.api.LinchpinAPI method), 38
set_cfg() (linchpin.cli.context.LinchpinCliContext

method), 43
set_cfg() (linchpin.cli.LinchpinCli method), 41

set_evar() (linchpin.api.context.LinchpinContext
method), 40

set_evar() (linchpin.api.LinchpinAPI method), 38
set_evar() (linchpin.cli.context.LinchpinCliContext

method), 43
set_evar() (linchpin.cli.LinchpinCli method), 42
setup_logging() (linchpin.api.context.LinchpinContext

method), 40
setup_logging() (linchpin.cli.context.LinchpinCliContext

method), 43

T
target, 45
teardown, 45
topologies_folder, 14, 45
topology, 13, 45
topology_file, 13, 45
topology_name, 45

U
up() (in module linchpin), 36

W
workspace, 14, 45
workspace (linchpin.api.context.LinchpinContext at-

tribute), 40
workspace (linchpin.cli.context.LinchpinCliContext at-

tribute), 43

Y
yaml2json() (in module linchpin.api.utils), 40

52 Index

	About LinchPin
	Introduction
	Installation
	Getting Started
	Configuration
	Example Topologies
	Python API Reference
	Glossary

	Indices and tables
	Python Module Index

